r'i-‘,. -.',/—/_\—‘f\ _—..f"’_ F A
f

I ;r & = Lo T T Mg =i o= —

Hler=Hzzhic= S

-

P T%:Eb:-.-;"

ey ynngipta 7

il -

=» Using Principia can reduce the end-to-end
production cost of digital entertainment
software by up to 40%o

& Faster

=» Principia can cut development time by up to
70% and multimedia content authoring
time by up to 30%o

& Better

=% \\/ith Principia, product is up to 50%b less
likely to contain critical bugs, and offers a
much deeper multimedia experience.

Why Principia ?

& Example: Create a complex 3D overhead world with
Interacting, varied characters over a convincing terrain

= Develop in house: weeks to months
= \With Principia: —1-3 days!

& Example: Implement blended skeletal animation renders:
=» Develop in house: one to several days

= With Principia: —1 minute!

@ Example: Implement fast quality path-finding in a
complex interactive environment with dynamic obstacles:

=» Develop in-house: several days

=» \With Principia: — 15 minutes!

& Example: Implement a particle system with instancing:
= Develop in house: hours
= With Principia: —1-30 minutes!

- " B -

Principia ?

= —_—— -\.
- eTERLT - A

Principia is an end-to-end toolbox for
producing entertainment software.

% Code j>
Deve lopment

]

i.i
Content :>
Authoring

VA

Moed pue

jenidaosuo)
uorjeuabajuj
vO 31onpo.d
uoringraisiq

Burbe

Simplified Entertainment Software Production Pipeline

e e ————

What Is Principia ?

Principia is an /ntegrated toolbox for

producing entertainment software.
v v v

Interfaces (APls, scripts, events..)

Product Content
assembly generation
components procedures

Demos, utilities and assets collection

Multiple
engines

Principia Engines

‘ -

<& Principia is not just a game engine:
= Many pre-defined ready-to-use game/art engines
=» Developers can create original engines with minimal effort

& Unprecedented breadth of capability
= Third person / First person / Cinematic / Arcade ...
= Open landscape / Interior / Custom environments ...
=» Single player /7 Multiplayer / Instanced ...
«» Fully configurable via script interface ...

& Powerful script and application interfaces

& Integrated asset management
& Embedded physics, process simulation and Al
& Best-of-breed performance and capability

Principia Components (1)

vty - L

QAppIication components implement nearly all
elements of successful games without coding.

=» Controls

=» Multimedia content

= Characters and objects
=» Animators and behaviors
=» \Worlds

=» \/lewers

= And much more ...

@Custom engines can be created by assembling
different world and viewer components !

Principia Components (2)

- = - . P = kS A Lk

A

& Production components provide support for
the market success of your product:

= |Installation

= Customization

= Collaborative content authoring

=¥ Licensing and digital rights management
=% Electronic distribution

=% Performance tuning and QA

= Data persistence and interchange

= Security

=» Auditing, accounting and billing
=» And much more...

Principia Procedures

= -

- - . 3 =) S

-l

& Procedures author and manage quality digital
assets rapidly and effortlessly:

= Textures and materials
= Geometry

= Animations

=» Objects

=» Characters

=» Particle systems

= Terrains

=» \\/orlds

= And much more...

Principia Interfaces

iy

At e Yy i

o W

& Scripting interfaces

= Customize components and create complete
applications with a minimum of code development.

<& Application interfaces

=» Integrate user code with Principia components and
engines to create custom applications.

& Actor/event interfaces

= |mplement hardware, player, Al, data and network
Interactions across multiple platforms.

& Auto-scalable client-server architecture

=% Run distributed multi-user applications on multiple
CPUs and GPUs. Or play a simple game of solitaire
on a legacy platform.

Principia V3 Application Structure

—

J W STC Sl a8

W o '

User application script

(defines objects, workflow and architecture) (implements entertainment o game play logic)

JO]]CEI_"E]OIJ Principia V3 core

lla content

> Core Principia V3 Library

Standard include + +

library content _ _ Headers
_ Graphic objects
(useful predefined names and Archetypes

components) Multimedia Ob_JeCtS Standalone functions
Structural objects Basic atoms

Effects ; .
Basic analytics
Procedures
Data capsules
Controls .
Devices

Viewers
. Interfaces
Objects (Characters) OS layers

Worlds (Engines) Principia C++ AP

.r'

he Demos ?

Much easier to learn how to do things!

The Principia Demos Package provides examples of
virtually any type of functionality commonly
needed in commercial entertainment software.

The Package is an excellent companion for working
with the Principia Reference Guide, which
documents the full spectrum of Principia
capabilities. It is also a great platform for doing
your own experiments.

= B 1 -

Demos Table of Contents

T — e, e

& Section I: Core Components

& Section 11: Specialized Components

& Section 111: Procedural Components

& Section 1V: Play & Physics Components

& Section V: Infrastructure Components
& Section VI: Production Gallery

& Section VII: Developer Utilities

& Appendix A: Component Synopsis

& Appendix B: Legacy Components

Note: Do not be mislead by the world “basic” you will see in Section 1. Some of the
basic demos take it from where the latest books on advanced game development leave.

1. Core Components

o 3
o - iy ol .

& Chapter 1 - Introduction to Principia
& Chapter 2 - Core Controls

& Chapter 3 - Basic Rendering

& Chapter 4 - Basic Shaders

& Chapter 5 - Basic Animation

& Chapter 6 - Structural Components
& Chapter 7 - Core Objects

& Chapter 8 - Core Worlds

& Chapter 9 - Core Viewers

& Chapter 10 - Audio and Video

& Chapter 1
& Chapter 2
& Chapter 3
& Chapter 4

& Chapter 5
& Chapter 6
& Chapter 7
& Chapter 8
& Chapter 9

1. Specialized Compone

- Advanced Controls

- Advanced Rendering

- Advanced Animation

- Effects, CPU-Driven

- Effects, GPU-Driven

- Specialized Material Objects
- Specialized Logical Objects
- Specialized Viewers

- Specialized Worlds

-t

111. Procedural Components }

=]

.

L = St o

& Chapter 1 - Elemental Procedures (Algebraic)
@Chapter 2 - Elemental Procedures (Structural)
& Chapter 3 - Procedural Textures

& Chapter 4 - Procedural Geometry

& Chapter 5 - Procedural Objects

& Chapter 6 - Procedural Animation

& Chapter 7 - Procedural Particle Systems
& Chapter 8 - Procedural Behaviors

& Chapter 9 - Procedural Worlds

& Chapter 10 - Procedural Narratives

& Chapter 11 - Procedural Audio

& Chapter 12 - Data Procedures

V. sics Compon
.{__-_.‘h___ﬁ?& Sl P e —_———y
& Chapter 1 - Behaviors | (characters)
& Chapter 2 - Behaviors 11 (items)
@Chapter 3 - Play data management
& Chapter 4 - Decision-making and Al

& Chapter 5 - Rigid single body dynamics

@Chapter 6 - Rigid skeletal system dynamics
@Chapter 7 - Soft single body dynamics
QChapter 8 - Soft skeletal system dynamics
& Chapter 9 - Particle systems dynamics

& Chapter 10 - Diffusion processes

& Chapter 11 - Fluid motion

%Chapter 12 - Ecosystem simulation

—t

V. Infrastructure Componentsﬁj-d

G

& Chapter 1 - Interfaces and devices

& Chapter 2 - Users and actors

& Chapter 3 - Scene and workflow design
& Chapter 4 - Networking and connectivity

& Chapter 5 - User and data persistence
@Chapter 6 - Configuration and requirements
& Chapter 7 - Performance and optimization
& Chapter 8 - Production packaging
@Chapter 9 - Encryption and rights protection
@Chapter 10 - Cross-platform development

& Chapter 11 - Distribution and installation

V1. Production Gallery

& Chapter 1 - Scenes

& Chapter 2 - Characters
& Chapter 3 - Creatures
& Chapter 4 - Things

& Chapter 5 - Landscapes

& Chapter 6 - Production VFX

& Chapter 7 - Production AFX

& Chapter 8 - Short movies

@Chapter 9 - Example Applications, Games
@Chapter 10 - Example Applications, Media

per Utilities

& Chapter 1 - Component editors
& Chapter 2 - World editors

& Chapter 3 - Format converters
@Chapter 4 - Requirement testers

& Chapter 5 - Performance testers
& Chapter 6 - Script generators

————— - .- 5.
_.l'r _ —

L

How to Use This Document ?

<& This User Guide is a collection of working demos. All
demos are self-contained applications that illustrate a
particular functional aspect of Principia V3.

< Each demo showcases:
=» Necessary Principia script to implement the demo
=+ Optional Principia APl custom code
= Discussion of component properties and methods

« Discussion of implementation techniques

& No demo provides a comprehensive record of the entire
set of Principia commands, objects, methods, properties
and capabilities. We recommend reading the relevant
sections of the Principia Reference Manual each time a
new item is introduced.

How to Use the Demos ?

W e

_‘"n‘i = E——— - = o o u o W ¥ . —

& Each self-contained demo application is in a separate
folder that holds all demo-specific files.

& Files common to multiple demos are placed in a special
common folder at the head of the hierarchy

<& The folders are organized in a directory tree that mirrors
the sections of the user guide.

& The user guide is accompanies by a Microsoft Visual C++
(version 6 or above) project, providing access to the
demo hierarchy, source code and scripts.

@ Using this project, you can compile, run, modify and
experiment with the demos.

Demo Nomenclature

= -

At e Yy i

)

& Demo nomenclature hierarchy
= General name: Demo
=» Section numeral: Demo_1
=» Chapter numeral: Demo_1.01
=» Demo folder topic: Demo_1.01.A TopicName
= Example within demo topic numeral: /ZEx01
& Component within example numeral: /EX01A
& Demo_1.02.B_Buttons/Ex04C
= Section 1, Chapter 2 (basic controls)
= Topic B (buttons)

= Example 4 (an example of particular selectable feature
within the demo, such as a specific type of button)

= Component C (third illustrative button in example)
& Shorthand notations
= File names feature no dots, i.e. 1.02.B = 102B
=» Slide title references abbreviate Demo_1.02.B to D102B

Demo Requirements

i o S m—————

. = . i e SLA s L

& Principia is NOT
=% A substitute for DirectX or OpenGL.
=% A substitute for the system low-level SDK.

& The Principia V3 toolbox provided requires
=» Microsoft Windows platform (Win98 or later)
=» Microsoft DirectX (9.0a or later)

=% An integrated C++ compiler

& Several demos require a graphic adapter with
advanced 3D rendering capabilities. If these
capabilities are not present, the demo may
generate an alert and terminate.

Why Is Principia Di

& Designed for real-time dynamic products

=» Unlike all 3D modeling systems out there

& Designed for content generation

= Unlike all game engines out there

& Designed for multiple product types

= Unlike most game engines

& End-to-end, integrated production

= Unlike all 3D modelers and game engines

& Proven in high-performance quality apps

e Demos Gallery

e — mm————— Sy

; AN P Ty -

A

<y Enclosed are screenshots from few of the demos
INn the Principia Tutorials Demo User Guide

=» The selection ranges from the simple to the arcane.

=» The selected topics cover rendering, controls, worlds and
procedural generation.

=% Most demos do not require a single line of code!

=» Most demos are based on components that are easily
configurable in script.

il Principia ¥3.0.0 Demos

7 T

_—)

IT §
¢

7 . f i -
Y £ Sy L - = S — e
DD e | TR y .

TERRAIN

/H]-";nlrurl':-:

F4
~
A =
"

L 1

/ WEALTH

1 The world of D108C/D702A houses a wide
Jvariety of gameplay objects, which are placed
using simple and intuitive GUI controls (no
more object scatter procedures!).

. | wrld: [5\9] [80] [419\1905] [17][68][0]
0 C : [13x16, 13x17, 14x17]
‘ [76.35,40.66,0.00][370.6,205.6,154.1][5.0,5.0]

s

EEG” 3
8>/ /é.‘.‘,_;lr.'.]-'lll AY

o

il Principia ¥3.0.0 Demos

A MNEW WORLD

¢
A
-
b,

- / WEALTH -

Objects also adjust for level-of-detail
automatically, and cast shadows on the
terrain. Shadows are dynamic with
practically no loss of performance.

%1 The key for high-performance
interactive rendering of objects and
world is in the structured design of

GAMEPLAY

-

: : P | world layers, as well as in several
=t CIRER L CRV D B P SRS RE 28] design enhancements that build upon
: S what we did in D108B.

-

il Principia ¥3.0.0 Demos

-
g
B
12

ol T
=
N
E o
Ll
L8]
-
o
n

| 1]

| EE
A,
| od
&)
4
o
0
~

/ WEALTH :

Objects such as buildings can be
! interacted with via the pointer in an
intuitive manner (even if our world

wﬂdﬂ Q?u*] 3704\191"@’] [33].[30] [0] ' yet). The objects are complex, multi-
?ﬁgf % ¥ component constructs which execute
- Camv: Igg. 3@ gff 3390 007[297. % HTA 2,42.9][17.9,17.9] complex animations and combine several
. ; : different illumination effects such as
i o reflective metal or glowing letters.

| Prlnclpla ¥3.0.0 Demos

_LuminosiTy PEAK

Lu 4 10s1TY MIDPOINT (% OF PEAK)
\ —_—

L iosiTY (% oF PEAK)
T~ -

_SreecuLar V:ouma (% oF peAK)

t

' Complex controls are easny scripted and

_lintegrated with the user application. Here,
|we have a control panel that fine-tweaks a
s large collection of shaders.

il Principia ¥3.0.0 Demos

.-{_.- B

R iono
™

. = oI ----.E

-
. IIIﬁ B : 8) =EmEEs
JENEEN: s EEEEEEEE | BEEEN-
A HEERR: s BERRERRRE« «~«BDEEN i/ o
¢ mEEEs sEm] Emes
ad T b4 I. : f::;';n::.::"::;"
: SOLAR PANELS
.I;. 2 B 4 ... E E = s
111 ENF] | "..'.'.'.. e
eoeco ey ERd | [] L J)]
288 .00
co " L ERTERERRERRER K
| BNl) .'®"..".'|
e - 1> AL.'.IB.B'.“
- c] EEEEEEEOEDEE: T -
buitdines. the sator onitones | alalll 4 4 1 L 4 L INJOJT] | TN ([ruoon csovome
to symbolic view mode. In . a M "..'.'..."'| -
available tiles for bullding EFENEEEEEEEEN:
letters and placing resources. __ |l -.----.."| z
Resources are an important S?Hi% Using the Principia data l!'.l

part of the game. After encapsulation methods, complex
generating a terrain, the user -0 '. game data can be richly

places resources and access displayed with few lines of
structures over the terrain. script and code!

&
Stairs: NEepeED
TO REACH HIGHLAMDS

BuilLpiNGS

L
>
=
o
—
=
o
.
.
o

i Principia ¥3.0.0 Demos

?’

@

EEEEEEEEEE
IIEEEEEEEEEE
AN —
| | |
IEEEEES

l‘.

Tile patches that are still
reachable on a fine-scale
basis are connected by
means to references to
external “portal” connectors.

TTTTCR—

. [Bridge or edge tiles carry
codes enabling motion only
into those cells that truly
@ Jconnect to the

Behind the scenes, there is
much more data that is essential
but not visible to the player.
Here, we examine automatically
generated path-finding data.

e

4 | Ell..ll:.n. Hnnl:n FoR
EIJ] 7 | ELECTRONICS AND
SOLAR PANELS

Do you know how much effort
you would spend to implement
product-grade path-finding in
your title?

| GaLENA: LEAD SULFIDE
ORE FOR BATTERIES AND

i EXPLOSIVES

.'-.-.-.|z

Normal tiles carry a full

- R

EEREEREEL"

Al aa d il by

Al E

FReeeens =

;":':Wh —
TERRRN

]]]

I L L

= b6.p1
Tl LA Sl S Tl e

Stairs: NEepeED
TO REACH HIGHLAMDS

R EMOVE RESOURCE

Ranpom, MormaL Game

Gﬂ.h‘IEPLhY

-

N e)
& |

M Principia¥.3.0.0

Lets shift to something simple: Controls.
Here are two buttons with programmable

graphic and logic behavior...

In neutral state, both buttons are red. When
clicked, the topmost button smoothly shifts to
a yellow “on” icon. When clicked again, it
shifts smoothly back to the neutral red icon.

When clicked, this button smoothly shifts to
yellow and then back to red without a second
click. The button is non-persistent.

M Principia¥.3.0.0

This is the same control
component (Indicator2A)
configured differently.

x-_:.,f___:_- SRR = e Principia has a vast library

::]{ f-_'_._'_'_'_'_.__,_'__'_') ' of control components.

o

Examples 4A-C show
progress by repeating two
simple icons with different
spacing

Example 4D shows
progress by illuminating
a row of lightbulbs

Example 4E lights each character
as the indicator progresses... but
wait...these are not series of
identical images! How on earth do
we do that?

il Principia ¥3.0.0 Demos

Ex01l: Basic Map?5. Method=Data mapped textures, Data=Z2{x,¥)

DataTex=4, WaterTex=Y, WaterAlpha=¥, Shading=Model, TexDim=MapDim A minimap control, conflgured

with a dozen script lines and
not a single line of code !!!

This is a simple use case of Map2S to generate a geomorphic
terrain map. It maps different textures to different scalar grid
elevations, applies a water level with depth-based transparency,
and performs user-configured terrain slope shading.

M Principia ¥3.0.0 Demos

SCES A

Ex0Z: Basic Graph2A. Obje¢t-drawn axis box, no autoranging, points and point methods.
Datax=var {Lineal (Frame)), Datay=¥ar(Lineal(xXrZ)}), data defined in script.

@' Licyrve on
el L |

15.0 20.0

Lineals are essential generating objects in Principia. CX_Graph2A
allows not only to plot their full trace, but also to visualize the
discrete, defining lineal points, and interactively moving them, thereby
updating the entire variables and lineals associated with the plot. This
CX_Graph2A functionality is essential for interactive graphic input.

Note how changing the axial position of a point updates both traces.
This is because they all share the same independent variable lineal.

il Principia ¥3.0.0 Demos

Ex01l: Planar reflection implemented wvia rendering and testing the stencil buffer
Render sequence control of Alpha,Depth,Stencil buffers wia material setting

Simple transparent
overlay of two
Images is the most
typical use of the
frame buffer.

Lets do some rendering now. You can define complex rendering sequences easily
in script. Principia encapsulates content in a unique manner that is geared
towards real-time game rendering, while enabling full range of complex VFX.

il Principia ¥3.0.0 Demos

Ex03: Use of lightmaps and shaders encapsulated in a material to illuminate an ochject
Material={¥5+PS+TexBase+TexDitfuseMap+TexHi1liteMap

More rendering...

This render of a highly polished
sculpture seemingly lit by a
nearby window is actually made
really easy thru the use of
simple light maps that store
“pre-baked” illumination used by
custom shaders.

Lightmaps can be procedurally
generated by Principia.

So, it is time to start getting
conversant with shaders and
textures, which are covered in
increasing detail in Chapters 3
and 4 (and used throughout)

i Principia ¥3.0.0 Demos

Ex03: Render target encompassing a GUI render step results in a reflection-like effect.
RT Effect=Clr_color_Depth. Passl: Render GUI on RT, Pass2: Render OBJ with TEX=RT

oo . o0

oo0 i) ooo

I 200 |

Complex rendering tasks are simple
to script...

This sphere seems to reflect the
GUI, including the moving cursor and
all. The effect is achieved by
rendering the GUI onto a RT
texture, which is then used as a

i skin for the scene objects.

==

i Principia ¥3.0.0 Demos

Per-pixel EMBEM lighting using camerla-space 5 cube Lap and

tangeni

1, P5:1.2, L=Env x (Spec+Diff), Aa=2%5,D=100, —MAP

There are over two hundred rendering demos with Principia you can

use as templates to avoid having to re-invent the wheel.

There are several approaches for adding bumpmaps to reflective
objects. The most accurate of them usually calculate a per-pixel

reflection vector for sampling the environment map, based on the local
normal perturbation. Because this operation involves an MxV in the
pixel shader, accurate EMBM requires PS1.4 or higher.

POS | 00 || oo oo |

‘??’4 il I.I:I.I:II:I i[l_[l[l

il Principia ¥3.0.0 Demos

[Shadow mapping is a global two-pass technique for automatic rendering of
projected and self-shadows. It renders the image in two direct passes

fwithout the need for geometry processing or overlays.

With the spreading penetration of PS20+ hardware, shadow mapping is
becoming the technique of choice over SV for rendering shadows.

|More rendering... Principia makes

it easy to implement shadows in
complex real-time worlds with
many moving objects.

M Principia ¥3.0.0 Demos

DT
L — = — — el

Ex01l: Generic3A ohject, States=1, Gomps=1, Meshes=1,
EhF=N, Animation=N, Spec=N

Principia objects encapsulate
content with kinematics and
animation. Principia features
many types of objects.

Each one of these shuttles is a
simple Generic3A object. The
|l kinematics of this collection of
- || objects is managed by a short
procedure, connected with this

page.

il Principia ¥3.0.0 Demos

Ex02: Prewvis (MWord Warror*robot character) animation authoring contiguous sequences.
Source: Keyframed MAX bone animation.
KF: 724 [ICS5_HEL_14]

Character objects are always
handy. They make many
complex things seem easy.

Most of the time, our little
robot is just idly peaching out.
However, it will also get up,
walk and do other things in
response to select keystrokes.

Ex02 focuses on authoring the
animation content for the WW2
game character, and on
designing animation controls.

Low-level behavior, such as
what the robot does while idling
is automatically managed by the
script. However, high-level
changes are controlled by the
game client. ExO2 provides a
code section for test-driving
high-level animation changes.

i Principia ¥3.0.0 Demos

PR e SRR A= A SRy T —

s
'Ex01: Basic WorldRT3A, Simplest Fowufdational Capabilities Demo

- .'t‘éénlfrq%:ﬁ'r'ldﬂf?ﬁ_ﬁenlﬂL, Yidwer=RT3A, DCT render paradigm, v5:1.1; PS:
r N T N S e ’ L - JALH ; i

R
- R A - & L
U g . £ PN

L&

"

Enough rendering for now.
Lets look at procedures. An
entire world populated with
objects is generated on the
fly using scripted procedures.

_ Many static objects are spread thru
1 our world. While there is some
structure to their spread, we have
some way to go before there is a truly
realistic-looking distribution.

Keep in mind, that a realistic
distribution may not be in the best
interest for strategy games, where
concentration and some stylistic
distribution can enhance gameplay,

T T

il Principia ¥3.0.0 Demos

2

-

{Mountainous features protrude
and reticulate in the ocean, as
a by-product of erosion and

proper texture UV mapping. All

= "\ this is automatically generated!

il Principia ¥3.0.0 Demos

AR e e R

C UodeﬁT%A Enﬁﬁﬁh\m&nt of ETewat1on Featurgﬁ i”?bﬁ

1 dRTBA_AsmlﬂL ‘ﬁ eneb@f@ﬁ

, "DET: render paraﬂjgm V5*1 1

__,__,

Note the good appearance of river
beds and animated water flow.

| The water cascades down the

terrain gradient steps naturally.
Remember, all this is procedurally

=l generated, using a sequence of
=4 terrain enhancement steps that
| started in Ex02.

il Principia ¥3.0.0 Demos
—~

Ex04: Rasic Hor1dRT3A,'EEJ,J-
GanProc=Wr 1dRT3A_AsmlRL, °

Leads [3] [1945] [296%136
cell: [423,258, 0.265]

Character object can be selected by

I clicking on them, and then directed |
| to walk to another location by means |
= of another click. Selected walking |

characters WI|| dlsplay thelr path

-
-

dt FECHILAR ON

-

I - -
et WERSFELIVE |

Foundation code for object
interaction, pathfinding and
other world/user behaviors
Is built into Principia.

—_—

o, T, 7 - Ty

There are many path-

finding methods. Principia ._
has many procedures for .
generating path-finding :
data automatically for you.

SVD design
& Quilt of “walkable”
rectangular regions,
derived using GridT
markings and Principia
topology procedures.

& Allows lightning-fast
and very optimal route
finding of any length
with or without
waypoints or bridges.

& Good for diverse terrain
with fixed obstacles.

& Bad for terrain with
many small obstacles or
many small navigability
changes.

T Al B
R L d 0

il Principia ¥3.0.0 Demos

What is behind the varied

procedural worlds and
Ex03: Lineal?2s, Method=RP¥[Random P"Ianar walk] . characters?
DoFl=¥, Aper=28, Shocks=Y, DoF2=¥, ScaleBox=Y |

Sometimes the simple can
be arcane too. At the root
of procedural generation are
abstract 1D, 2D.. nD
mathematical objects.

The true power of Principia
resides in the vast array of
scriptable and embeddable
procedures for generating
such objects.

This Africa-like shape is generated using the random " _
planar walk (RPW) generation method. Longer Camern FoV R |
segments indicate locations where a “shock” is used to R s E !
change the direction of the walk. All the statistical e bt W
parameters of the walk are user-programmable. ILJ 4 L,J 2

e

il Principia ¥3.0.0 Demos

Ex10: Exploration of Kern&l2A Generatiwve Mechanisms,
Voronoi PDF-Scattered Kernel

Some examples from a
SINGLE procedure with
different configurations.

i

S v

62.5

bb.7 ‘ *:!';J

F

&

o .

-

v

p—

gmﬂn

-,j y S —p—— ; Ih‘-a'- __'

) Persrecsive
3 DeTEoconAL

—

HField2K Gallery: Voronoi kernel
with basis points scattered
according to a planar PDF and using
a programmed non-Euclidean
distance metric M=| |dx|-|dy]| |

M Principia¥.3.0.0
A i NS e LT S

Ch202F .Ex04: Interactive design of a HFieldfKernel procedural object Using a VarSet/VarSetter

:h combination, the user can

;_;' i ? : interactively explore different
- ‘ HField2A designs, based on

. - different core kernels, and xy
' transform kernels.

' il rt
S EELEINTON.

NIV

A NE NETANEE

Lo Tt e dd b]
|
’ m
T A iy e

Spniies S ahlins

L; .

We can hook the procedure inputs
to a control with few lines of
script ... and presto, we have a
basic procedural texture making
application...

il Principia ¥3.0.0 Demos
—~

-rii: P

Some examples from a

Ex1Z?: HField?s shape-based heighttield, Method=AUTOSHAPEL
TechO=RCP, Techl=RCP, Apply=Logic{Tech0-Techl)

SINGLE procedure with
different configurations.

This archipelago is generated using the
technique composition based Autoshapel
method of HField2S. Besides being very
fast and powerful, this generation mode
enables to key the multiple and arcane
procedural controls to simple selectors,
such as lo-med-hi. This is extremely
useful for giving the end-user simple
and intuitive control in production
application such as world generators.

Some examples from a

Ex01: Statically defined AField2P from script S_INGLE procedure Wlth
Programmable heightfield fractal procedure different configurations.

/

This pattern is generated from a
programmable HField2P object. The
procedural program features a simple
functional kernel, and a custom non-
linear fractal scaling routine.

Look Ar Pomr
EJoo | Joo]-Tuu

il Principia ¥3.0.0 Demos
—~

o ﬂ __/"',- ﬂ - g

Some examples from a

ik i S ™

7
! Exll: HField2s shape-based heighttield, Method=FILLZ
| single Lineal2s({RPW) shape, constant fill, 15 smoothing passes
A
- +

SINGLE procedure with
different configurations.

pLLIERTING ON |
J SPECULAR GN

-

L) PEREPECTIVE

0 OFTHoCOMAL
-

- -]
SelalSiled S5 LIS

Pl i 15
7

- AMERA AZINUTH

HField2S Gallery: This “splat” height
field is generated using the FILLZ
method, which fills polygons with data.
The input polygon is provided by a
Lineal2S, which can generate an endless
variety of shapes (splats, islands...etc)

Slope distribution,
clearly showing

Taluses
Canyons
Riverbeds
Erosion fans

Sedimentary plains

High plateaux

The elevation is
produced using
FX_ErodelA proc.

Not all procedures are simple. Here is a

terrain generation procedure that emulates

terrain erosion and produces an elevation map
| with realistic geologlc features.

il Principia ¥3.0.0 Demos

Ex01: Enhanced Thermal and Hydrau‘l‘i‘c FX_ERODE_1A precedure
Therm=N, Hydro=Y, Rain=(5,T,P), Temp=N, Soft=N Starting with a thermally smoothed
Iteration: 1999 terrain, hydraulic erosion yields grooves
" on the hills. Note the automatic
generation of a river flow channel. All
parameters identical to previous erosion.

Ll = e my=y

’ GPS: 31.3
i

Procedures can be ran offline by the content
team to produce game art, or embedded in
the end-user application to allow end-user
content generation.

—— — - -

il Principia ¥3.0.0 Demos

e

Ex01l: FX_LiquidlA water sdrface data map generation,
Mode=pre-existing elevation mapping, Output={Z,D,R,L,U,¥)

-

In water mapping mode, FX_Liquid1lA
analyzes a pre-existing elevation field
(usually produced by erosion procedures)
and generates several data series that
describe the water surface on that terrain
(e.g. water level height, depth, logic map
for tile geometry carving, riverinity factor
and natural UV for flow simulation).

Here we visualize the output depth using a
grayscale map.

Procedures for liquid flow simulation and
analysis can be used to surprising
purposes- here we generate a pre-
computed naturally fitting UV-map to
animate water flow in real time with zero
CPU/GPU overhead.

il Principia ¥3.0.0 Demos

Ex01: Normal (bump) map génerated from OPSNORM_14
Input=RGEB grayscale heightmap, Output=RGEE X¥Z tangent space [01]-packed normals

Some procedures automate and massage
existing data to generate production
content. Simple example: automatic
extraction of normal maps for shaders.

This classic normal map of a brick texture is
generated automatically using TexOpsNorml1A.

The input map is 8-bit grayscale elevation, and
the output map is an 8-bit RGB encoding of the
normal vector in tangent space, packed in the
[01] interval (unperturbed normal <k> to flat
surface has a light cyan value of OX7F7FFF).

Because the input and output surfaces are in the
same 8-bit format, the procedure can be used
as a texture loading argument. This is the most
common use case.

il Principia ¥3.0.0 Demos
e

r../

Ex03: TexWrk_WangExtract3A procedure, automatic atlas-based generation of Wang set from pr-
wangMode=Corner, WangPrimaries=3, Layers=3, Masks=2{from Photoshop), AtlasEx=¥

In combination with FX_WangPasm3A from
Ex02, the FX_WangExtract3A procedure
has a layer mode, which can completely
automate the generation of Wang texture
atlases and the extraction of members,
given only the grayscale atlas masks from
Photoshop. This saves a lot of time...

ta production procedures may
seem arcane, but they can save days and
even weeks of work !!!

il Principia ¥3.0.0 Demos
e

Ex04: TexWrk _MaskExtract3A procedure, true Alpha mask extraction from Photoshop samples.
Blend mode=Normal, Samples at 0,50,100 base

|
| .
o A

. . .

4 .
|

Ever made a nice interface in
Photoshop with glass buttons,
shadows...etc.; and wasted hours
trying to get the alpha and color
channels in your textures right so
that the game engine renders a

result that looks like the original
design?
The Principia *MaskExtract3A
procedure is designed to take

. series of Photoshop-ed elements
sampled with different

DIiFFICULTY S,z backgrounds, and generate an
RGBA texture mask that replicates
the shadows, glows and glints you
see in Photoshop.

It is a HUGE time saver!!!

il Principia ¥3.0.0 Demos

#‘

==

Ex02: Procedurally generated Cy1inqroidﬂl, with caps and cutout
FYF=RNT1l, T=TrigList, R=HFZA{image), DisMap=0, Tex0=Image, B=0, C=0, Frames=0

This much more realistic tree
trunk is generated using only a
minor variation of ExO1,
whereby caps and a cutout are
prescribed, and the texture is
mapped to different regions.

Note how the texture in the
cut and caps deforms to
espouse the overall shape.
This is a feature of the
procedural generation process.

Procedures are not limited to 2D data.
There are many geometry generation
procedures...

i Principia ¥3.0.0 Demos

Ex01l: EBipedlA with relative weights distribution over the mesh.
single animation sequence in keyframed kinex. Sjipgle weight indexed skinning in ¥s

5

Lo A
v

This character has been generated
from the Principia Bipedl1A procedure,
and has several key features useful for
production applications.

=Geometry import from Poser and
3DSMax in multi-mesh 3DS file.

=Automatic conversion of the import
data into single-mesh skinned system.

—Automatic generation of smooth blend Ly i AR And more ... this procedure
N

weight distribution in junctions where

: > automatically generates skinnin
the designer wants smooth skinning. Y9 g

_ _ : weights given a model. If you
=Automatic generation of keyframe generate these externally (e.g. in
animation data from high-level relative MAX, you can use it to easily import
bone rotation specification.]) i
the weights in a machine-readable
vertex stream).

D306A Ex06 — DataBonedlA

-\.

IEI Track View - Cusve Edifor

|hjw_kklr.n |hggﬂmpﬁﬁk % '\‘x”ﬁlr_FEP'ﬁr_ﬁlyﬁMM4qum
£ 1500 ;“1?0

160 :
N | RE
A
120
1o

o —

T

t83Bgbus oBEE8E

Sid= Fonee Shark Tagees
Side Fins Erd Tapes
Froek Fm
Frort Fim Size

Froek Fan Start Taper
Froerk Fan End T aper
Eack Fin

Bk FuySee

Baoxck Fen 5Eael T o
Bzck Fen End T apes
Generabe Mappeno Cooc
=1 Borss02

: —- Y Pozhon == - . .
i 10 = : Same for animation data...
iR — - - E = Procedures that import MAX

| = =i 2 =]l i animation in machine-renderable
form and modify it are a big
time —-saver for your production.

LTI L

i Principia ¥3.0.0 Demos

e

Ex01l: SysGen_ObjScatter?F*procedure, Dist=2D_Pos_PDF{sX,sY), Var=1D_Freq_PDF(X,Y,I)
Instanced, Samp(X¥)=PrevPos+Rnd, Grid=.00/.00, MinMaxR=_QQ/.00, Jitter=N, MaxCel]=1, MaxTen

More procedures...this time on
particle generation. Most Principia
procedures are built upon a
common mathematical framework
of plug-and-play mathematical
objects. This makes them
extremely powerful and flexible.

The functional form of the distribution maps is a powerful Principia paradigm for
Lldesigning almost any type of scatter. Here, we use the fact that the position
H1sampling functions PDF_Pos() take as argument the last point position, to generate

a scatter based on 2D random walk.

i Principia ¥3.0.0 Demos

e

Ex02: 5y5Gen_0hj5catter2F'procedur%, Dist=PlantEcosystem{(2sp), VYar=PlantEcosystem(Zsp,age)
Instanced, InitSeed=Rand{2), Per-species{Liv_Map,5rv_Pdf ,Mor_prdf),
Maturityscalesize=({25,0.1,1.0), RepAge=4, Seed=({2,0.05), Seas=1000, Jitter=Y

- .

-.'-
s /
4 :

This distribution of particles of different
variety and size corresponds to a plant
ecosystem simulation of two species, each cher procedures actu_ally
having a respective living range, mortality S'mU|a_te natural selection and
il and survivability properties. The simulation evolution processes.

Is carried over several seasons and can be i ..
fine controlled by a variety of parameters. J g -z s Ok. Enough! My head is spinning.

ey ynngipta 7

il -

=» Using Principia can reduce the end-to-end
production cost of digital entertainment
software by up to 40%o

& Faster

=» Principia can cut development time by up to
70% and multimedia content authoring
time by up to 30%o

& Better

=% \\/ith Principia, product is up to 50%b less
likely to contain critical bugs, and offers a
much deeper multimedia experience.

What Is Principia ?

7

An essential ingredient for your

success as a producer of

commercilal entertainment

software and content

Legal Notlces

‘.

& A General Principia V3 End-User License Agreement (EULA) has
been provided as attachment to the present documentation and
digital media. /f this EULA is missing, do not proceed further,
and do advise Western Star Entertainment Litd of the situation.

The present material is provided to you under the terms of the
General Principia V3 EULA. In particular, you may not:

=» Disseminate this material in any form or fashion without Western
Star’s express written permission.

= Use Principia V3 or any part of this material in developing
commercial products without Western Star’s express written
permission and specific development license.

Principia is fully compliant with all Microsoft DirectX, Microsoft
SDK and OpenGL EULAs. If you do not intend to abide by all
relevant third-party EULASs, do not use Principia and please do
dispose of all attached software and documentation materials.

r'i-‘,. -.',/—/_\—‘f\ _—..f"’_ F A
f

I ;r & = Lo T T Mg =i o= —

Hler=Hzzhic= S

-

P T%:Eb:-.-;"

