ds 2TC

S

eeeern £2
amene L

<j
i

(

E

SICS l
ﬁ.

Q Demo0l01A — Starting a simple Principia app

<& Demo0101B — Basic GUI with user code

& Demo101C — Adding text and performance info
<& Demo101D — Adding sound to the basic GUI

& Demo101E — Diagnostics

& Demo101F — Rendering basics

& Demo0101G — Finalizing the demos GUI

D101A — Basic Startup

@ No custom user code — run from script only

& The simplest requirements possible
= Display GUI framework
= Display cursor
= EXit when user presses ESC
=% Fixed 1024 x 768 x 32bpp resolution
= NO sound, bells or whistles

& lllustrates the basic structure of a Principia
application and the use of the Principia API
within a C++ development environment

& Particularly useful for troubleshooting basic
system issues across different platforms

— b,
P

D101A — Basic Concepts

ot o ek,

? & Development environment

= E.g. a Visual C++ project for building Principia-based
applications. Ensures that all the external libraries and
includes are properly compiled.

& API file

= The main C++ file that is compiled to produce the
executable application.

& Main user file

= The main C++ program written by the user. It must be
included in the API file.

& Script file

= A file containing Principia commands and definitions that
can be parsed and executed by the Principia interpreter.

& Root directory

= An absolute path relative to which all Principia file name
references are made. Typically, contains script files, media
files, runtime directories...etc.

S 2000-2005, g
i

= - Vi mmrrmrmnn S [Snprerrr e nenre [EENENENE, Srmnms: (=) Sl
o Vel SudR TSR A e Moo PR \PUAS SERTES &) =200

[File Edit WView Insert Project Buld Tools 'Window Help

|

‘wiorkspace 'Principia_apit 1 project(s]
- Principia_Api files
=23 Application
Principia_Api_Main.cpp
Principia_aApi_ ain.rc
Principia_v300.inc
—1-429 Products
+-- (L1 Product_040621_EubbleB ath
=423 Product_040701_Demos
+-(_] Demo_0.00_Common
-3 Demo_1.01_Basics
=423 Dema_1.01.4_BasicStartup
Demal 014 _Main.cfg
Demol014_Maincpp
+-[Z7 Dema_1.01.E_BasicUseCade
+-[Z1 Demo_1.01.C_BasicT extQut
+--[L Demo_1.01.0_Basictudio
+-[Z7 Dema_1.01.E_BasicGUI
+-[_1 Demo_1.01.F_BasicRender
+--[(] Demo_1.01.G_FinalGUI
+--(Z7 Demo_1.02_Controls
-1-429 Principia_Code
(21 LibHeader_Core
(23 LibCore_Functions
[Z LibCore_Base
(2 LibCore_Components
[Z3 LibCore_Datacaps
(21 LibCore_loCamm
(2 LibCore_lnterfaces
[Z7 LibCore_Graphics
(21 LibCare_Sound
(2 LibCore_Effects
(23 LibCare_Procedures
[Z1 LibCore_Controls
(2 LibCore_viewers
(3 LibCore_Objects
(21 LibCore_world
(2 LibCore_System
+1--[27] LibE tensions
+-[_7 Principia_Library
+-- ([Records
+-[Z] External Dependencies

DEMO0A_Common

The present application ser
It exercises different func
Reference Manual for Builde
between user-originated and

specify the user applicatio

#define CFG_MASTER_PROGRAM "
Si#define CFG_MASTER_PROGRAM "
Srwdetine CFG_MASTER_FROGRAM "
Si#define CFG_MASTER_PROGRAM "
Frwdetine CFG_MASTER_FROGRAM "
Si#define CFG_MASTER_PROGRAM "
Fe#define CFG_MASTER_PROGRAM "
Si#define CFG_MASTER_PROGRAM "
Sewdefine CFG_MASTER_PROGRAM "
Arfw#define CFG_MASTER_FROGRAM "
#define PCM_DEVELOPMENT_DIAG
#define PCM_TOLERATED_ERRORS

e) o)
A48 Compile the Principia 1ibra
e

#include "../Principia_codesPri
#include CFG_MASTER_PROGRAM

mmmmrmen S
W ESTER _.;J -f_

<

<

Open VC++ project
Principia_Api that
contains all the demos
Project compiles
Principia_Api_Main.cpp
which is just a pointer to
the desired demo code.
This file i1s in the project
application folder.

Principia is included in
source form. Other ways
to link Principia will be
explored later. Principia
code is in its own folder.

The demo source and
data hierarchy resides in
its own folder structure.

RN G P S ERTES fr'g—_;, T 00 =T,

APl Code

-: & API code is only a reference to the actual main
| <& API code links to the Principia library

& API code specifies the compilation modality:
enable complete runtime error checking and
compilation of self-diagnostic code sections.

//
@s/
@s/
(44
//

ine CFG_MASTER_PROGRAM " . ./Product_040701_Demos/Demo_1.01.A_BasicStartup/Demo_101A_Main.cpp"
ine PCM_DEVELOPMENT_DIAG 1
ine PCM_TOLERATED_ERRORS 0

//
/70
//@ Compile the Principia library and the
//0
//

. ./Principia_Code/Principia_v300.inc"

#include
#include CFG_MASTER_PROGRAM

3
:
J 2O O=Z005
4

mmmmrmen S r:'-"‘ -E‘rr:-_-'—‘r_"':' e e [F—m ==, W= S (=) =
Y ESTER :;J-r._f: TERTAVAIE s PRI Wy S _‘(__,,y O G= 0%,

& The main Demo_101A code specifies the root
directory, and executes the single script therein.

/7 //
/7 T.Valkov(c)2000-2004@@0//
//0@ @//
//@ MODULE: Application Definition s/
//@ GROUPS: User custom code @s/
//0@ @s/
//@ This module provides definitions of all the components of a Principia-based application as/
/70 @s/
//0 @s/
/7 //
/7 //

#define PROD_NAME

#define PROD_VERS NULL

#define ROOT_NAME **_.//Product_040701_Demos//Demo_1.01.A_BasicStartup//"
#define CONF_FILE ""Demo_101A_Main.cfg"

#define INST_FILE NULL

#define CORE_DUMP "Files_Runtime//CoreDump.txt"

/7 //
/7 T.Valkov(c)2000-20040@@//
//0 as/
//@ MODULE: Application Main s/
//@ GROUPS: User custom code s/
//0@ @s/
//0 as/
//0 as/
//@ as/
/7 //
/7 //

BGN_PRINCIPIA_MAIN (PROD_NAME, PROD_VERS, ROOT_NAME, INST_FILE, CORE_DUMP){

/* Execute the application main Principia script */
Principia->ParseFile(CONF_FILE);

END_PRINCIPIA_MAIN}

=

1= r'"'"’-""_‘?ﬂ.

Principia scripts define application components and actions. A component is
defined by its properties (#tags) and actions (#¥method), triggered by listening
to various signals in different channels of the Principia system interface.

The demo begins by incorporating some standard Principia components, such as
DEF_TEX: a “property definer” for common textures. These are in separate
included script files. Leave them alone unless you are an advanced Principia user.

@@@@@ This is a comment line
@@@@@ Include standard name definitions, of which we will use one

##parse "._.\._.\Principia_Library\Principia_StandardDefinitions_Core_v300.cfg"
##parse "._.\._.\Principia_Library\Principia_StandardDefinitions_Procedures_v300.cfg"
##tparse "../Demo_Common/Files_Scripts/Module_INTERFACES.cfg"

The demo script continues by creating the required interfaces for the application.

= A system interface, defining channels for internal signaling in our applications, and
features basic “clock-pausing” methods

= An input interface with standard keyboard and mouse
= A windowed 1024x768 32-bit graphic interface

= A basic audio interface with volume control variables

% The interface creation is also contained in a separate script. Interface definition
Is too complex to be covered here. Suffice it to say that the script creates what
we need in a typical application. For now, just copy this script.

—

mmmmrmen S r:'.-'.l -
W ESTER :;J -f._J.r__

-5 4 :
TS S T rme RIS NG Sermnms: (w20
: L= SIS ()]
i - -t

e
- L

e ik

D101A — Script, Frame

= H @000@0@@ Definiti 1 i taini th hic interf; -

) Q TWO MOost basiC COMPONENTS | cicos: The ber 80 properey i defined in the Standard mmetudes
@@@@@@ to denote a surface stored in plain system memory.

| are surfaces and frames

##define (S_INTERFACE) as <SURFACE>
#tag Definer = (DEF_S2D)

@ -Su rfaces hOId graphic zzgg Eci);SNow : '('../Demo_CommoglsiIes_Media/GuiLl/Image_MetaIMeIt.bmp"
Images. They Can be ##define (F_INTERFACE) as <FRAME_2A>
- #tag Image = (S_INTERFACE)
created from files

Frames display the surface
content flat on screen

& Our interface is basically a
frame covering the screen

Surfaces can have many
properties - such as the
definer tag that specifies
their memory location and
usage. Here, we use a
standard predefined flag for
a non-transparent 2D
surface in system memory.

=

- o T o (. [
D Sy E i FOAR IE

P

") & The pointer is also created iderine (5_CRS_NORY) a5 <SURFACE-

#tag File =

ou t Of f rames. stag "D_éi{&egf_Coano(n/Fi 1 es_glEeg_i_?E/)Su)rso rs/Cursor_Norm_C.bmp"

#tag LoadNow = (1)

‘@ The frames are transparent ##idefine (S_CRS_OVER) <SURFACE>

#tag Flle
./Demo Common/Fl les_Media/Cursors/Cursor_Over_C.bmp"

and offset from their #tag Detiner = DEF. TEX)

#tag LoadNow = (1)

default upper-left corner s#doTine (F RS NORM) as <FRAVE 24>

, : - - it S e
iInsertion point. This way, a _

. ##define (F_CRS_OVER) as <FRAME_2A>
command to display the T . I ¢ IR
pOinter at (X,Y) places the ##dg;gﬁoc(iApl CUngR)(aSE;EUE?SE ZA? CH_CRS , X_HIDE)
pointer tlp there instead Of fmethod E E);E_ggmg . g::ggg . §:?'>3§g . E:EEE:QSEM
the pointer upper left

corner.

The pointer can hide or
chose its appearance by
activating a given frame.
These actions are triggered
by signals in the CH_CRS
channel.

Ay S emnmr "'._ GG =)
e =S RS 1.,_1;,

" & Another basic component is
' a <VARIABLE> that holds
some application data. This
one takes a true value if a
X_TERM signal is present in
the CH_SYS channel.

Other basic components

generate control signals in
response to mouse location
or keyboard action.

Here, signals are generated
If the user presses ESC, the
mouse is in the viewport or
outside of it.

Note that channel names,
signhal names...etc are
defined by the user.

##define <SYS_VARIABLE> = (VSC_TERM ,

CH_SYS , X_TERM)

##define (API_KJAY) as <KJAY_2A>
#method = (

##define (API PJAY) as <PJAY_2A>

#method = (ON_API ,

#method
#method
#method
#method

ON_KEYPRS ,

ON_LFT ,
ON_RGT ,
ON_TOP ,
ON_BOT ,

VARTYPE_LOG ,

CH_SYS ,

CH_CRS ,
CH CRS .
CH CRS .
CH_CRS .
CH CRS ,

X_TERM

X_NORM
X_HIDE
X_HIDE
X_HIDE
X_HIDE

" & The basic display components

are pages, books and scenes.

& A page is a collection of other
components. Here, our page is
the interface, the cursor, and
the two signal-generating
controllers.

& Abook is a collection of pages
that can be turned on or off.
Our book here has a single
page, always on.

& A scene has a display loop
that shows all the scene
components — here, our book.

The scene runs the display
loop until the control variable
defined above turns true.

¢

##define (PG_MAIN) as <PAGE_2A>
#tag Element F_INTERFAC
#tag Element AP1_CURSO
#tag Element
#tag Element

##define (BK_MAIN) as <BOOK_2A>
#tag StartOpen
#tag StatelD

1

1)
#tag Element =
PG_MAIN , 1)

##define (SCENE_MAIN) as <SCENE 2A>
#tag VarStop = (
#tag Element = (

00@0@@@@ This statement is the actua
@000@@@ Everything else before is d

##run (SCENE_MAIN)

(D
(MAIN |,
(

E,
R,

API_PJAY |,
API_KJAY

MAIN ,

VSC_TERM)
- BK_MAIN)

1 scene execution
efinition and setup

@ - e % -~ . - ‘. e -] =}

- D101A — Scripting Syntax (1)

R —

st o ot

& Principia script commands

H##parse “Name” Interprets a script file
H#create <ID> Creates an API interface
#H##define <ID> Defines a component
#H##run <ID> Runs an executable object
H#save <ID=> Saves object data
H#tdelete <ID> Deallocates a component
#H#rset <State> Sets component states
H##goto/#H+#label Script flow control

#H#halt Stops parsing and exits
H#tt/H#H#tels/H#teif Conditional flow control
HHversion Requests Principia version

~ D101A — Scrlptlng Syntax (2)

S o

9 Principia command tags provide arguments for
| each command. There are two types of tags:

=% Short tags for short, single-line commands just hold the
argument data between parentheses in the same line as
the command. For example ##run (CMD) with (ARGS...).
In such cases, the tags do not have names. Principia

Interprets the context of the single line command, and
automatically determines what the tags mean.

=% Long tags for commands that require complex data, such
as ##define. Each long tag has the format #tag TagName
= (data stream) on its own line.

= Most component definition commands use named tags,
and Principia expects you to use correct names. In
development mode, unrecognized tags will be listed in the
runtime diagnostic file.

J.l___.._,J' = —,’r"T_E‘rr'."..'_'—r-f':'_fﬂr_'.r-r.r_—.-r. L -.(,(J'.zﬁ!;aﬁ S Ii-:j GG 0) S

-] - g 3 - . - ‘. G -] -}

- D101A — Scripting Syntax (2)

_.\.v = :

e ot o

& Tag data stream syntax

' = () delimits tag data

= , Or ; separates tag data items

- @ ' leading/trailing comment, skip rest of line

= $Var inserts the value of variable Var into stream
-y encloses text data

= {}... used to issue special instructions Iin text data

Q Text data special instructions

= “{ABSOLUTE}...” with file names indicates that the
file name is an absolute path.

ke
&

o g i RN ol =) @

D101A — Summary

o . = o o v by

Q-Our application does not do much on the
surface besides displaying an arguably funky
Interface with a moving pointer.

= Behind the scenes, all of the complex initializations

of the 3D graphic accelerators and various devices
has been accomplished

& It has taken a single line of code to do this:
Principia->ParseFile(CONFIG_FILE_NAME)

& Principia V3 features hundreds of components
with a myriad of properties and actions.

= Blending scripted components with some custom
code enables the rapid creation of extremely

powerful, commercial-grade entertainment products.

& How to do it is the subject of this document.

5 D200

- ..; :.rf..r'.-lr-r‘r-jr—r:',y 3 ‘_._':;'—.f - rE' - :r .r.'.-."’-F_:.'."'-— Epjfd:l Pﬁfr f@ﬁpﬂ s f:_..} (=7 :

-
-
@

D101B — Basic User GUI

& Add sockets for custom user code in scene

& Introduce some new GUI features
= Transparent interface window
= Background image visible thru window
=% Simple button to exit application
= Button to change pointer and glow if mouse over
=» Cursor to cast shadow

& lllustrates the basic methods for blending
custom user code with Principia components

Q lllustrates basic concepts in image transparency
and memory storage

—

W e AR G SERTES :fgj 200200

-
-
@

QThe APl main C++ file has not changed except
to point to the user main Demo_101B.cpp file

& That file enables the user to define three custom
procedures and bind them to the start, display
loop and termination of the main scene. These

procedures do nothing for the moment.

/* Code changes relative to DemoOl1A */

void User_Scene_Init (void* Varg /*Pointer to calling parent object */)
BGN_ACTOR CODE{

END ACTOR_CODE}

void User_Scene_Main (void* VArg /*Pointer to calling parent object */)
BGN_ACTOR_CODE{
END_ACTOR_CODE}

void User_Scene_Term (void* VArg /*Pointer to calling parent object */)
BGN_ACTOR_CODE{
END_ACTOR_CODE}

/* Code changes relative to DemoOlA */
BGN_PRINCIPIA_MAIN (PROD_NAME, PROD_VERS, ROOT_NAME, INST_FILE, CORE_DUMP){

/* Bind the user custom code to partlcular application objects */
Principia->BindUserProclnit (""SCENE_MAIN" , User_Scene_lInit);
Principia->BindUserProcMain ("SCENE_MAIN" , User_ Scene Main);
Principia->BindUserProcTerm ("SCENE_MAIN" , User_Scene_Term);

/* Execute the application main Principia script */
Principia->ParseFile(CONF_FILE);

END_PRINCIPIA_MAIN}

rfm,jrp .

& The interface definer is
changed to request a
transparent surface in
managed video memory

@ This transparency uses
the default color key
OxFFO00000 (black).

<& To create the illusion of a
shadow, the pointer
transparency utilizes an
alpha map provided in a
separate file.

& If a surface is created
with an alpha map, color
keys are ignored.

= Vo
=) 1= J,;Iuj

@@@@@ Transparent interface frame is based on a simple color key

##tdefine (S_INTERFACE) as <SURFACE>
#tag Definer = (DEF_TEX)
#tag File **__/Demo_Common/Files_Media/GuilLl/Image_MetalMelt._bmp"
#tag LoadNow (1)

@@@@@ Cursor frames use a shifted alpha transparency map of the
@@0@@@ object image to create the illusion of a shadow.

##define (S_CRS_NORM) as <SURFACE>
#tag File **. ./Demo_Common/Files_Media/Cursors/Cursor-Norm._bmp*
#tag Alpha ' . ./Demo_Common/Files_Media/Cursors/Cursor-Norm.xmp"
#tag Definer C DEF_TEX)
#tag LoadNow ¢ 1)

R) <SURFACE>
. ./Demo_Common/Files_Media/Cursors/Cursor-0Over _bmp™
**__./Demo_Common/Files_Media/Cursors/Cursor-0Over .xmp"
(DEF_TEX)
(1)

##define (S_CRS_OV
#tag File
#tag Alpha
#tag Definer
#tag LoadNow

o nm i nn

+ m = Hand outline with shadow

& The button has a single state
and two actions. When not
active, it displays nothing —
Its base image is already on
the interface.

The check region for the
pointer-button interaction
can be a complex polygon,
specified relative to the
button insertion point.

& When moused over, the
button generates a pointer
change signal and displays a
frame simulating glow.

& When clicked, the button
sends the same termination
signhal as the ESC key.

& The glow effect is achieved
using an alpha map.

H...,j.-... .

@@@@ This button frame is activated when the button is moused over
@@@@ 1t implements a glow effect using an alpha map and bright
@@@@ background on the object image.

##define (S_BTN_TERM) as <SURFACE>
#tag File **_./Demo_Common/Files_Media/GuiL1/Btn_Term_Over_C.bmp"
#tag Alpha "*_./Demo_Common/Files_Media/GuiL1/Btn_Term_Over_X.bmp™
#tag Definer ¢ DEF_TEX)
#tag LoadNow (1)

##define (F_BTN_TERM) as <FRAME_2A>
#tag Image = S_BTN_TERM)

@@@@ The button features two signal actions and a single state.
@@@@ The button check region is specified as a polygon in pixel
@@@@ coordinates relative to the button insertion point.

##define (BTN_ TERM) as <BUTTON_2C>
#tag State = (NORMAL -, NONE , NONE ,

)

#method =

F_BTN_TERM
#method

F_BTN_TERM
#tag Region
#tag Region
#tag Region
#tag Region

(ON_OVER ,
NONE , -

(ON_LCLK , CH'SYS ,
NONE -

(60, 30)

(80, 10)

(100 , 30)

(80, 50)

CH_CRS , X_OVER , NORMAL ,

NORMAL ,

X_TERM ,

L ey S e :fmj,fff :

_
-

-

-

The background image is simply
a transparent frame displayed
behind the interface.

The enumeration order
determines display order.

Nesting: The button is nested
within a page, nested within a
book, nested within a scene.
This is a key Principia concept
enabling powerful and flexible
scene construction.

Anchors: The position of a
nested object is specified
relative to the parent anchor
using the upper-left-corner
pixel-units display paradigm
The topmost parent is usually a
scene object, anchored to the
screen upper left corner.

T ~
=n

##tdefine (PG_MAIN) as <PAGE_2A>

#tag Anchor

#tag Region

#tag Element
#tag Element
#tag Element
#tag Element
#tag Element
#tag Element

AAAAAAAAA

v v \/

F_BACK 01 ,
F_INTERFACE ,
BTN_TERM |
API_CURSOR ,
API_PJAY
API_KJAY

(e}
o
[eNeoloNeNoNoN B

L I R B A |
N\ N\ N\ NN

= [T =y (P—r s [Ser——rr=r rreerrr
c UV ESTERT <5 -,’_r:'_f__. T

oy Sernes: ()
R

-]
-

-

-

I i - Ty = -] @

D101B — Summary

=3 g L, - v '

& Significant new functionality has been added
with only few new definition lines of script.

& A key Principia programming model introduced

=% Binding of custom user code to Principia objects
enables to use all the predefined capabilities of the

myriad objects in a customized user application.

& Two key new capabilities introduced

=% Alpha maps enable easy definition of translucency,
shadows, halos and many other complex effects.

= Nesting of components in books, pages and scenes
enables to create and manage complex scenes.
& These are few of the thousands of features that
drive the power and flexibility of Principia V3.

i Principia¥.3.0.0

ADAPTER: Intel{R) 82915G Express Chipset Family
05: Windows 2000

G5: DirectX 9.0

FREE MEMORY: 757413 kb

FREE DISK: 142912 mb

A

c Text Output

N
ot i N

Q Display a corner diagnostic panel
= Showing application FPS: frames per second
= Showing application VPF: vertices per frame
= Showing application SPF: state changes per frame

<& Display background info in a separate frame
= Operating and graphic system
= Free disk space on volume holding demos
= Free memory
= Adapter information
& Introduce some more basic concepts:
= Fonts
= Principia commands
= Textout component for text display
& Introduce key custom code basics
w» Accessing Principia objects
= |ntegrating custom code with Principia object execution
= Executing graphic operations from within custom code

e
T

S—
- = =) [=
-_' If _‘

D101C — Script (1)

I

ot

##define <SYS_VARIABLE> VI_FPS , VARTYPE_FLT , 9.

" & Numeric variables are
' defined in the script to pidefine <SYS_VARIABLE: VI-MPE . VARTYPEINT -
hOId the deSired Values ##define (TX_FPS) as <TEXTOUT_2A>

#tag Plate = (-, -, -
#tag Value = (VI_FPS , -, -, "FPS:%6.1f" , FN_INFO14)

@ TeXtOUtS are key ##dzggepging) as ETEXTOUT_2A>

L.)
#tag Value = (VI_VPF , -, -, "VPF:%6d" , FN_INFO14)

com po ne ntS fo I teXt ##define (TX_SPF) as <TEXTOUT_2A>

#tag Plate = (

Output Th ree textouts #tag Value = ¢ VLSPE. - -) "SPF:%6d" , FN_INFO14)

d f. d d ##define (PG_INFO) as <PAGE_2A>
Anch

are aertined an tag pchor

#tag Element

connected to the ftag Efement
variables

TX_FPS .
TX_VPF .
TX_SPF .

A separate page holding
only the three textouts is
defined. This is all
needed to display the
values of the three
variables on the screen.

4
002005
o

W smrrmme _'_:'.'—.fr:':-f-%‘r " ';'f nerere=e e [- =i =TT _'_'t‘r—r_'_.'__r-——. .r?f.-.' = i a)=
Y ESTERY Sl IE i = L= SERIES ((Z)) =2 =

-

<
¢

<

Where the variable values
are going to come from?

The user code declares
references to the three
variables.

When the scene begins, the
references are connected to
the objects declared in the
script.

When the scene runs, the
variables (now connected)
are assigned with the three
performance metrics from
the public graphic interface
object.

This is one of the key
techniques for integrating
user code with Principia
objects and frameworks.

H...,j.-... .

DECLARE_GLOBL SX_Variable* avarFpPS
DECLARE_GLOBL SX_Variable* avarVPF
DECLARE_GLOBL SX_Variable* avVarSPF

void User_Scene_Init (void* VArg)
BGN_ACTOR_CODE{

/* Obtain pointers to the Principia objects defined in the script */
aVarFPS = (SX_Variable*) Principia->GetReferenceTo("'VI_FPS™);
aVarVPF = (SX_Variable*) Principia->GetReferenceTo("'VI_VPF");
aVarSPF = (SX_Variable*) Principia->GetReferenceTo("'VI_SPF");
aFreeFr = (CX_Frame2A*) Principia->GetReferenceTo("'F_LEAF_01");
aFreeTx = (CX_Textout2A*) Principia->GetReferenceTo(""TX_FREE");

END_ACTOR_CODE}

void User_Scene_Main (void* VArg)
BGN_ACTOR_CODE{

/* Update the display variables with the appropriate internal metrics */
aVarFPS->Assign(Api_PerfMonitor->PerfRepFPS) ;
aVarVPF->Assign(Api_PerfMonitor->PerfRepVPF);
aVarSPF->Assign(Api_PerfMonitor->PerfRepSPF);

END_ACTOR_CODE}

—

A Srmnmre (1)) S0 T
LAy SiEmini: TFJ G = WS

I

D101C — Script (2)

ot

" & The purpose of the new
| user code is to only e eag seaxiipen =%
assign the correct value | i ’
to the displayed data

1)
. PG_MAIN |,
. PG_INFO ,

& To do the actual display,
all we need to do is add
our new page with
textouts to the scene
display stream by
incorporating it in the
main book at the desired
Insertion coordinates.

But wait ... how did the
system know what font
and text size to use?

NN S (T S0 i <
- — -I"-"y - = - — .‘_‘

| = f Al S T S

e

ot e ik,

D101C — Script (3)

@ PrlnC|p|a featu reS a. faSt @0@@ Typical production font definition refers requires three files
. i . @e@@ 1) Glyph image map

@@@@ 2) Glyph alph
Industrial grade text engine | &5 3 & oo embery xfa data fite

@@@@ Plus surface definer for the glyph data, alignment flags .etc.
that does not rely on

##define (FN_INFO14) as <FONT_3A>

i #t ImgFil .. \D C \Fil Media\Fonts\Font_INFO14_C.bmp"
WlndOWS fon‘ts #tgg AT%th emo_Common\Fi les_Media\Fonts\Font_ _C.bmp

. .\Demo_Common\Fi les_Media\Fonts\Font_INFO14_X._bmp"
#tag XFdFile " . .\Demo_Common\Fi les_Media\Fonts\Font_INF014_C.xfd"
#tag Template

& Fonts are defined via glyph | ki poomons

(_
[¢ TXTINS_LFT)
#tag AlignV

(TXTINS_TOP)
maps that enable fonts to wdeFine (N INFOL

be packaged with the §§§ 'ﬁFli
product and achieve many § A:§v
special effects.

The Principia text engine
renders text by rasterizing
portions of the glyph map

through the GPU.

Two fonts are defined in the
demo and their glyph maps
stored as textures in video
memory

) as <FONT_3A>
*_ .\Demo_Common\Fi les_Media\Fonts\Font_INFO12_C.bmp"
**_ .\Demo_Common\Fi les_Media\Fonts\Font_INFO12_X.bmp*
" . .\Demo_Common\Fi les_Media\Fonts\Font_INF012_C.xfd"
(DEF_TEX)
(TXTINS_LFT)
C TXTINS_TOP)

o nnN i nn

_A
R - . o . -
= e P RS 0002005

v

= Viimmermme Sreime 1S = PP TEE S ZNINVIENEGY Srrnmne (=] 20 =
o WY ESmslRll SorAR BN TSR Tl Sl SERIES IS IR i)

D101C — Script (4)

= - - - - aho o - X

)) @ Where dO glyph maps Come This section of the configuration script shows how to use Principia

1 = to generate glyph maps based on installed fonts. It needs to be run
1 t te the glyph d in the d , includi

from? What if |1 just need a the” XTd fiTen: The glyph man can be. used As Generated or edited to

simple Arial font?

create the desired special effects such as glows .etc.

##define (FN_INFO14) as <FONT_3A>
#tag Foundry “Lucida Console"

9 D101C shows how to use g e 2 ¢ PRTERS

14)

o 1 . = #tag Weight 800)

Principia to automatically oy sackcir ooe 3
#tag AlignH

generate the glyph maps oy Expand 53

#tag ExpandH 5)

need ed fro m a SySte m fo nt ##tsave (FN_INFO14) in ('..\Demo_Common\Files_Media\Fonts\Font_INFO14_C.bmp')

alpha in ('..\Demo_Common\Files_Media\Fonts\Font_INFO14_X._bmp')

The glyph map of any font Hidefine (FN_INFO12) as

#tag Foundry = "Verdana"

can be generated by using #tag Template - ¢ DEFTEX)

14
#tag Weight 800 g
T 1 L_DKRED
the SAVE command e eI CLDRED 3
#tag AlignH

#tag AlignVv
#tag ExpandW

If not needed further, any #tag Expandi
object can be removed from | " G2 Kot Gmmerien et rancron iz X oy
memory using the DELETE pidelete (FN_INFOL4)
Command ##delete (FN_INFO12)

=)
TXTINS_LFT)
TXTINS_MID)

=)
TXTINS_LFT)
TXTINS_MID)
5)
5)

b (ESUERY ‘;_:-—-f r:-_'f_

': & This took care of the FPS

D101C —

(3)

I

Script

ot

display. How about the
background info text
box? It can be done in
the same way as above
using variables and static
textouts...

But we will use instead a
different approach where
the information is
generated directly from
within the custom user
code.

Here, we define an
empty textout and page
to be used as templates
In the user code.

##tdefine (S_LEAF_01) as <SURFACE>
#tag File
"../Demo_1.01.C_BasicTextOut/Files_Media/Image_MatteBack-C.bmp™
#tag Alpha
" _./Demo_1.01.C_BasicTextOut/Files_Media/Image_MatteBack-X.bmp"
#tag Definer = (DEF_TEX)
#tag LoadNow (1)

##define (F_LEAF_01) as <FRAME_2A>
#tag Image S_LEAF_01)

##tdefine (TX_FREE) as <TEXTOUT_2A>
#tag Plate C
(

#tag Value
1) as <PAGE_2A>
(-
(

FN_INFO12)

##tdefine (PG_LEAF_
#tag Anchor
#tag Region

Inio nn

-

e
T

[T e
-] PSSR

[y F
< . T FE =] G
AR £ f‘ —

- // In user C++ code, bind the empty page object to a user procedure that
Pag eS an eW Ot er // Will actually perform the operations desired, namely the display of

// various background information in a semi-transparent frame overlay.

ContrOI ObjeCtS are ideal BGN_PRINCIPIA_MAIN (PROD_NAME, ROOT_NAME, INST_FILE, CORE_DUMP){

- - /* Bind the user custom code to particular application objects */

for Incorporatl ng Custom Principia->BindUserProclnit ("SCENE_MAIN" , User_Scene_lInit);
Principia->BindUserProcMain (""SCENE_MAIN" , User_Scene_Main);

Principia->BindUserProcTerm (""SCENE_MAIN" , User_Scene_Term);

Code i n th e re n d e ri n g Principia->BindUserProcMain ("PG_LEAF_01" , User_Page_FText);

/* Execute the application main Principia script */

Stream Principia->ParseFile(CONF_FILE);

END_PRINCIPIA_MAIN}

& We need to bind the

template page to a user In the script, insert a reference to this page at the appropriate

place where it should appear in the scene. Why do we do that? It
is easier to control where in the scene rendering sequence will

rocedu re WhiCh Wi II this page appear. We can force the display of the PG_LEAF_01 page
completely from within the user code (in fact without even
having to define it in the script) but it takes more work and is

perform the actual jot required in most cireunstances. e will revisit this in
deSi red taSk. ##define (PG_MAIN) as <PAGE_2A>

#tag Anchor
#tag Region
#tag Element

& We also need to include | &

#tag Element
#tag Element

the template page in the f129 Ejenent
right place of the scene
rendering stream.

F_BACK_O1 ,
F_INTERFACE ,
BTN_TERM
PG_LEAF 01 ,
APT_CURSOR ,
API_PJAY ,
API_KJAY

W mnnn
ANANANAAAAAAA
QOO0OQWOoOOoO I
L R R B B |
NN\

r"'r-rr_j-r' It h—fr'f_% ‘_.'-_.‘_-_ el ._',-_._' F=f=aiiv| ﬁ'_f;.ﬂ'_.ﬁ_' -rr' Jaie .r(f:.J ,J{Ff-‘(.' '-'ur‘ ‘ '

void User_Page_FText (void* VArg)

The IaSt thing Ieft to do iS to | Ber-AcToR"coneY

code the custom user
procedure which will render
the frame with background
info. The code may look
complex but it is actually
straightforward

We locate the parent page
anchor position with *VArg

We print the frame using
the standard Principia
Update() display method

We generate the text we
wish to print, the position
where to print it relative to
the anchor, and use the
Textout2A->FreePrint()
method to display it

/* Get the insertion point of the free text page as origin for this
display */

XIns = ((CX_Page2A*) VArg)->AnchorAbsX;

fYIns = ((CX_Page2A*) VArg)->AnchorAbsY;

fYDel = 20;

/* Display the free frame and set the insertion point for text */
aFreeFr->Update(fXIns, fYIns);

XIns += fYDel;

fYIns += fYDel;

/* Generate and display free text: Adapter Name */

AdapterID = Graficlnterface->ScreenA;

sprintf(WrkStr,""ADAPTER: %s', Api_SysConfig-
>Adapter ID[Adapter1D].Description);

aFreeTx->FreePrint(fXIns, fYlns, WrkStr);

fYlns += fYDel;

/* Generate and display free text: 0S */
sprintf(WrkStr,"0S: %s', Api_SysConfig->InfoOSName->Str);
aFreeTx->FreePrint(fXIns, fYlns, WrkStr);

fYIns += fYDel;

/* Generate and display free text: GS */

sprintf(WrkStr,"GS: DirectX %d.%d", Api_SysConfig->InfoDXVerA,
Api_SysConfig->InfoDXVerB);

aFreeTx->FreePrint(fXIns, fYIns, WrkStr);

fYIns += fYDel;

/* Generate and display free text: Memory */
sprintf(WrkStr,""FREE MEMORY: %d kb', Api_SysConfig->InfoMEMAVI) ;
aFreeTx->FreePrint(fXIns, fYlIns, WrkStr);

fYlns += fYDel;

/* Calculate free disk space on volume holding current directory */

int k = Api_SysConfig->InfoDSDFree[0];

for (int i=0; i<Api_SysConfig->InfoDSDn; i++) begin{
if (Api_SysConfig->InfoDSDRoot[i]->Str[0]==Api_SysConfig->InfoEXEDIR-
>Str[0])
k = Api_SysConfig->InfoDSDFree[i];

endif}

/* Generate and display free text: Disk Space */
sprintf(WrkStr,""FREE DISK: %d mb™, k);
aFreeTx->FreePrint(fXIns, fYlns, WrkStr);

fYIlns += fYDel;

END_ACTOR_CODE}

— b
n

D101C — User Code (4)

. W

// Loose ends — we must not forget to define references for the template

Q We have used tWO diffe rent // textout and frame, or connect them to the objects in the script.
methods for text display,
but the paradigm carries
over to many other
rendering functions_ void User_Scene_Init (void* VArg)

BGN_ACTOR_CODE{
The fi rst method uses a /* Obtain pointers to the Principia objects defined in the script */
avVarFPS = (SX_Variable*) Principia->GetReferenceTo("'VI_FPS™);
- s VarVPF = (SX_Variable* Principia->GetRef To("'VI_VPF™);
statically constructed script | &arse - Gvariaies principiascetreferenceTo¢-vi_Sre:
- L, ¥ aFreeFr = (CX_Frame2A*) Principia->GetReferenceTo("'F_LEAF_01");
for renderlng and mlnlmal aFreeTx = (CX_Textout2A*) Principia->GetReferenceTo("TX_FREE'™);
)
END_ACTOR_CODE}
user code to update the

data rendered

The second method uses
templates defined in the
script, and does data
management and rendering
from within the user code

The second method is more
powerful but complex. A
commercial application
typically relies on a blend of
both methods.

DECLARE_GLOBL CX_Frame2A* aFreeFr = NULL;

A
(ETEr = PRI S 0200 2
=

et ST iermy tSuilx IEWTE pren=rre [Keem S PEIMNIENZIIAY SErmnms: () 2000 2005
-3 W SIS BRI il : SIERUBT R ey We e/ S SEE S =

@ D101C showed different ways for defining fonts,
printing text and integrating user code within
the application. Again, highly complex tasks
were achieved with few lines of code.

@- There are many alternative pathways for

achieving the same goal in the Principia
framework. The most suitable one depends on
the user requirement.

& To achieve the full power of Principia, the user
needs to embrace its component framework and
become thoroughly familiar with the reference
manual. The demos will provide examples of
many ways for getting the job done.

5 2005

e DRI T "".-..-'-" PEF{J'@W‘% NEr ff':j} =7 :

-

o
-

-

M PrincipiaV.3.0.0

ADAPTER: MOBILITY RADEOMN 9000
05: Windows XP

G5S: DirectX 9.0

FREE MEMORY: 233901 kh

FREE DISK: 6300 mb

e

- 3 - L)
ot e ik,

sic Audio

‘ @Add utility navigation buttons to the GUI

=% Introduce the concept of encapsulating related
component groups in self-contained script files

= This avoids endless scripts and enables reusability of
user code segments and script atoms

=» Not much has changed visually, but the concept of
architectural organization is so important that it
deserves a separate section of its own!

Q Introduce the basics of audio support

& Play sound when these buttons are clicked

mmmmrmen S r:'-"‘ -E‘rr:--'—‘r_"':' ErEE =R [= F= We=NIEA . e] e
Y EST .r:;J-r._f; rERTAE T SR Wy S _‘(_'_w O G= 0%,

D101D — Script

;’“_____________________ ————————

- - -
- -

Q PrinCipia prOVideS a. riCh @@@@ Variables controlling channel volume range from O to 100, i.e.

@@@@ silence to full blast volume. These variables can be connected

Set Of Complex aUdiO @@@@ to other Principia objects such as sliders to control volume.
##deFine <SYS_VARIABLE> (VS_LEV_MIN , VARTYPE_FLT ,)

Capabi I itieS for bUiIding ##define <SYS_VARIABLE> (VS_LEV_MAX . VARTYPE FLT .

##define <SYS_VARIABLE> (VS_LEV_MAIN , VARTYPE_FLT ,

CO m m e rC i al p rOd u CtS T h i S ##tdefine <SYS_VARIABLE> (VS_LEV_USER , VARTYPE_FLT ,
demo shows most basic 0006 channels that have individual volune control varisbios.
aS peCtS Of SO u] d ##create (SOUND_INTERFACE) as <SOUND_INTERFACE>

#tag ReqHaveSound OPTIONAL)
#tag ReqStereo OPTIONAL)
ABSENT)
YES)
22050)
8)
YES)
ACH_MAIN , VS_LEV_MAIN)
ACH_USER , VS_LEV_USER)

#tag Req3DSound
& The user must create a A Redstrictert
#tag ReqSampleBits

sound interface and

#tag SoundChannel

specify the audio features

[L L T I A T
NN

& The interface has audio
channels to which sounds
are assigned

@ Each channel can apply
effects to its sounds, such
as volume. These effects
are controlled by means of
variables from the script

o = 20002005 w
=

. ":} :.rf..".-r-rr_"—r—r:--; - I':'-" = P —" A =Ty = o =i =, jre=r =gl his =i .r"f:,T e = ¥
Q@ WY ESUERN STAR. = Sird O = {Ei= o i I SRS, ﬁﬁf A S =1

Ak. t <SU RFACE> @@@@ A standard predefined template for simple sounds, prescribing
In O @@0@@ default memory storage for a non-streaming, non-looping sound
@@@@ that can be interrupted in all circumstances.

objects that hold visual srdptine (SIOOEE_SIIPLE) a5 <0 GAROETO:

#tag MemPool

data, there are a variety of | = 5533?25”9

objects that hold audio e Unstoppable
data. <SOUND_ 2A=> is the

mOSt baSiC Of them - @@@@ Two simple sounds are provided in_the Common directory_of the

@@@@ demo packages. The sounds are assigned to the MAIN audio channel.

##tdefine (A_BEEP_01) as <SOUND_2A>

Like graphic objects, s ele T S /oeng Cormoniles Nedka/GpSound T v
audio objects have definer |, . e

prototypes that specify e

their properties. Here we

use a predefined
prototype from the
Included standards file.

S <SOUND_2A>

. ./Demo_Common/Files_Media/GpSound_Tic02.wav"
¢ SND_BEEP)

(ACH_MAIN)

nmiimnw mniaun

& As most audio formats are
proprietary, Principia V3
can read only WAV files.

= Vo
=) 1= J...,.m

& There are three basic ways to
play sound
% By assigning sound
reference to property tags
where available (e.g. for
buttons)

By using sound controller
objects that DJ the audio
INn response to signals

Directly from the user

code

& This demo shows only the
first method, applied to a
button object

& Note that different button
actions can be mapped to
different sounds

e

##define (BTN_UTIL_UNVA) as <BUTTON_2C>

#tag State

#method

F_BTN_| UNIV
#method

F_BTN_UNIV
#tag Region
#tag Region
#tag Region
#tag Region

(~ NORMAL ,

ON_OVER ,
NONE ,

(ON_LCLK ,

A_BEEP 01 ,

(28, 60)

(51, 46)

(69, 58)

(, 73)

##tdefine (BTN_UTIL UNVB) as <BUTTON_2C>
(

#tag State
#method
F_BTN_UNIV
#method
F_BTN_UNIV
#tag Region
#tag Region
#tag Region
#tag Region

NORMAL ,

(ON_OVER ,
NONE

(ON_LCLK ,
A _BEEP 01 ,

(28, 60)
(51, 46)
(69, 58)
(., 73)

##define (BTN_UTIL UNVC) as <BUTTON_2C>

#tag State

)
#method

F_BTN_| UNIV .

#method

F_BTN_| UNIV
#tag Region
#tag Region
#tag Region
#tag Region

NORMAL ,

(ON_OVER ,
NONE ,
ON_LCLK ,
_BEEP_O1 ,
28 , 60)
46)
58)
73)

A
(

(51,
(69 .
(51,

NONE ,
NORMAL ,

NORMAL ,

NONE ,
NORMAL ,
NORMAL ,

NONE ,
NORMAL ,

NORMAL ,

FEm "I"'
-.-\-.-J--A—h.-!

O -200
=) ZOO0Z00S

-
<
o

& The GUI basic built so far —

frame, buttons, diagnostics -
are required by all demaos.

These are encapsulated in

separate, common script file,

that can be included in all
application scripts

This requires to divide the
scene main page into pages
leaving space to insert user-
defined components. Here,
these are the free text panel
and the background image.

Scripts can be nested and
elements defined in a prior
script can be overridden.

The use of shorter,
hierarchically organized
scripts is a recommended
practice.

H...,j.-... .

@@@@ The section of script where the new action takes place
@@@@ is now really short. We do not need to mess with the GUI
@@@@ basics for the time being.

##parse "Modularized_GUI .cfg"

@@@@ These are the only components specific to DEMOO1D.

##define (S_BACK_01) as <SURFACE>

#idefine EFEE2CK 01) as <FRAME_2A>

#idefine iseEEAF 01) as <SURFACE>

#idefine EFGEEAF 01) as <FRAME_2A>

#deFine (TitEREE) as <TEXTOUT 2A>

##def-né inzEEAF 01) as <PAGE_2A>
. etc

@@@@ Al we need to do is include the GUI component-holder pages
@@@@ at the appropriate layers of the user application.

#itdefine (PG_MAIN) as <PAGE_2A>
#tag Anchor
#tag Region
#tag Element
#tag Element
#tag Element
#tag Element

(

(-,
(F_BACK_O1 ,
(PG_GUI_BASE ,
(PG_LEAF O1 ,
(PG_GUI_OVER ,

##define (BK_MAIN) as <BOOK_2A>
#tag StartOpen ¢

#tag StatelD (MAIN , -, , , o,

#tag Element = (MAIN , -, . o, 0 , PG_MAIN ,

##define (SCENE_MAIN) as <SCENE 2A>
#tag VarStop = (

VS_TERM)
#tag Element = (s)

BK_MAIN)
##run (SCENE_MAIN)

L ey S e :fmj,fff :

_
-

-

-

D101D

& Exactly the same
encapsulation can be
performed for the custom
code sections that manage
the common performance
display

& All we need to do is include
the common code and
Invoke the procedures
defined therein in the
appropriate location of the
scene user custom code.

U mmmmmrn T e [Shn

9 kit

— Code

// The only code needed is that specific
// to each individual demo application.

#define ROOT_NAME

#define CONF_FILE "'Demo_1.01.D_Main.cfg"
#include "Modularized_GUI .cpp”

void User_Scene_Init (void* VArg)
BGN_ACTOR_CODE{

/* Execute initialization for the common performance display */
Common_PerformanceDisplay_Init(VArg);

. Etc.

END_ACTOR_CODE}

void User_Scene_Main (void* VArg)
BGN_ACTOR_CODE{

/* Execute scene loop operations for common performance display */
Common_PerformanceDisplay_Main(VArg);

. Etc.

END_ACTOR_CODE}

"'_.//Product_040701_Demos//Demo_1.01.D_BasicAudio//"

-~ 7 ¥
P *SER e ()
-I‘-’J

L -0

JET= ;" ":-."_:. J

.
<
o

R i N, - By -] @

D101D — Summary

& lllustrated the basic use of the audio interface
and sound objects

& lllustrated the concept of script and code joint
encapsulation into basic building blocks

QWe can change the interface appearance by
simply referencing another block than
Module GUI VO. In fact, we will build two more
Improved versions of the GUI.

il Principia ¥3.0.0 Demos

These buttons navigate the
nearby performance display
and pause/resume the
application internal clock

ADAPTER: Radeon X1300 Series Secondary
05: Windows 2000

G5: Directx 9.0

FREE MEMORY: 2097152 kh

FREE DISK: 75169 mhb

These buttons send general
Rendering registration test: Memory Surface Implementation pur‘pose Signals ﬂ'\a'f activate
& various demo objects later on.

Rendering registration test: Managed Texture Implementation

Principia application clock is HALTED.

This panel displays some
basic surface rendering These buttons navigate between
tests patterns and info. different examples within the
same demo (only one here, but
this will change later ..)

D101E - A Better Common GUI

e e ———
-3 _"_'—__ — —— - - - - - - L) - - ~ _}/_

@ Taste being a matter of opinion, the one thing that can be
said for the previous GUI is that is eye-catching.

= “lt is better to be noticed badly than ignored goodly”!

= The round main viewport may be original, but it is not very
suitable for maximizing the display area.

=» Redesign the GUI with a view-maximizing viewport, and

add a host of useful features for later.

= Encapsulate this GUI script and code in a modular form
that can be included and used by all subsequent demos.

@ Introduce many new useful concepts:
= Surfaces and their types, formats and contents access.
= Rendering diagnostics for development purposes.
= Control buttons with different states.
=» Page-flipping controller.
= Page functions ... and more.

S ROV-2005,
-

= Wimsrrmmeng O r:'-"‘ -E‘rr:-_-'—‘r_"':' e e [F—m EA e A e B e S e =) =
Q@ W ES5TER :'_J'Jr__ f‘ = = o o | = _,Iivj L S =y

=] - - =} - 5 e NS - R g e - -] @

j D101E - A Better Common GUI

@

WSS L S TS ey T b e g A, g
i ——— = —— s

& The GUI is encapsulated for easy inclusion in
other applications and standard functions:
=% Application quit
= Application module navigation
= Application generic purpose buttons
=% Application performance reporting
=% Application pause

o = Globally available SigDEBUG signal is mapped to F1
| <& Notice how the GUI frame casts a shadow on :
whatever contents are below. This cool 3D

effect is simply implemented using alpha

transparency and a diffuse alpha mask.

o & The encapsulated GUI script and the demo
application script are included here in full.

—

-
-
@

T L= (PRINCUPIA SRS 6) 200 0-2005

Q Note that not all definition tags of an object need be
specified. An omitted tag results to a default “common
sense” value for the property specified, usually zero. In
the demos, all tags are specified for reference purposes.

T.Valkov@(c)2000-200400@
@@

PRODUCT_040701_DEMOS
SECTION: PRELOAD STANDARD DEFINITIONS

##parse "..\._\Principia_Library\Principia_StandardDefinitions_Core_v300.cfg"
##parse "..\.._\Principia_Library\Principia_StandardDefinitions_Procedures_v300.cfg"
##tparse "../Demo_Common/Files_Scripts/Module_INTERFACES.cfg"

T.Valkov@(c)2000-2004@@@
00

PRODUCT_040701_DEMOS
SECTION: APPLICATION AUDIO OBJECTS

##define (A_BEEP_01) as <SOUND 2A>
#tag File ./Demo_Common/Files_Media/GpSound_TicOl.wav"
#tag Definer (SND_BEEP)
#tag Channel (ACH_MAIN)

##define (A_BEEP_02) as <SOUND 2A>
#tag File ./Demo_Common/Files_Media/GpSound_Tic02.wav"
#tag Definer (SND BEEP)
#tag Channel (ACH_MAIN)

Vmms o= -
VESTIBRN = ,..'.’..,E'f—

' -

T.Valkov@(c)2000-2005@@@
00

PRODUCT_040701_DEMOS
SECTION: APPLICATION CURSOR

##define (S_CRS_NORM) as <SURFACE>
#tag File **_./Demo_Common/Files_Media/Cursors/Cursor_Norm_C.bmp*
#tag Alpha *_./Demo_Common/Files_Media/Cursors/Cursor_Norm_X.bmp*
#tag Definer (DEF_TEX)
#tag LoadNow (1)

##define (S_CRS OVER) <SURFACE>
#tag File = . ./Demo_Common/Files_Media/Cursors/Cursor_Over_C._bmp™
#tag Alpha ./Demo_Common/Fi les_Media/Cursors/Cursor_Over_X.bmp"
#tag Definer (DEF_TEX)
#tag LoadNow (1)

##define (F_CRS_NORM) as <FRAME_2A>
#tag Image = (S_CRS_NORM
#tag Offsets = (=22, =2

##define (F_CRS_OVER) as <FRAME_2A>
#tag Image = (S_CRS_OVER
#tag Offsets (-24 , -2

##define (API_CURSOR) as <CURSOR 2A>
#method = (EXE_HIDE _CRS , X_HIDE)
#method (EXE_SETIMG R X_NORM , F_CRS_NORM)
#method (EXE_SETIMG CRS , X_OVER , F_CRS_OVER)

.j-r-- f TR ! 4, r-—-— r---r [l =] -r

ee

ee

ee PRODUCT_040701_DEMOS

ee SECTION= APPLICATION INTERFACE FRAME AND BACKGROUNDS
ee

ee

##tdefine (S_GUI_A) as <SURFACE>
#tag Definer (DEF_TEX)
#tag LoadNow 1)
#tag File *_./Demo_Common/Files_Media/GuilL2/Image_FrameA_C.bmp"
#tag Alpha ‘. ./Demo_Common/Files_Media/GuilL2/Image_FrameA_X.bmp*

##define (S_GUI_H) as <SURFACE>
#tag Definer DEF_TEX)
#tag LoadNow 1
#tag File
#tag Alpha

(
" . ./Demo_Common/Files_Media/GuilL2/1Image_FrameH_C.bmp*
'../Demo_Common/Files_Media/GuilL2/1Image_FrameH_X_bmp™

##tdefine (F_GUI A) as <FRAME_2A>
#tag Image (S_GUI_A)

#define (F_GUI H) as <FRAME_2A>
#tag Image = ("S GUILH)

T.Valkov@(c)2000-20050@@
@@

@0

00

@@ PRODUCT_040701_DEMOS

0@ SECTION: APPLICATION BEHAVIOR CONTROLLERS
@0

00

##define <SYS_VARIABLE> = (VS_TERM , VARTYPE_LOG , CH_SYS , X_TERM)

##define (API_KJAY) as <KJAY 2A>
#method (ON_KEYPRS |, CH_SYS , X_TERM ESC)
#method (ON_KEYPRS , CH_SYS , X_DEBUG F1)

##define (API_PJAY) as <PJAY_2A>
#method ON_API CH_CRS X_NORM
#method ON_LFT CH_CRS X_HIDE
#method ON_RGT CH_CRS X_HIDE
#method ON_TOP CH_CRS X_HIDE
#method ON_BOT CH_CRS X_HIDE

.j-r-- f TR ! 4, r-—-— r---r [l =] -r

ee

ee

@@ PRODUCT_040701_DEMOS

ee SECTION= APPLICATION TERMINATION BUTTON
ee

ee

##define (S_BTN_TERM) as <SURFACE>
#tag File = "__./Demo_Common/Files_Media/GuilL2/Btn_Term_Over_C.bmp"
#tag Alpha . ./Demo_Common/Files_Media/GuilL2/Btn_Term_Over_X._bmp™
#tag Definer (DEF_TEX)
#tag LoadNow (1)

##tdefine (F_BTN TERM) as <FRAME_2A>
#tag Image = (S_BTN TERM)]

##define (BTN_TERM) as <BUTTON_2C>

#tag State NORMAL , -, NONE , NONE , -)

#method CH_CRS , X_OVER , NORMAL , F_BTN_TERM , NONE
#method CH_SYS , X_TERM , NORMAL , F_BTN_TERM , A _BEEP_O1
#tag Region
#tag Region
#tag Region
#tag Region

T.Valkov@(c)2000-2005000
0@

@@

@e

@0 PRODUCT_040701_DEMOS

) SECTION: APPLICATION EXAMPLE NAVIGATION BUTTONS
ee

ee

##define (S_BTN_LEFT) as <SURFACE>
#tag File **__/Demo_Common/Files_Media/GuilL2/Btn_Util_Left_C.bmp"
#tag Alpha '_./Demo_Common/Files_Media/GuilL2/Btn_Util_Left_X.bmp"
#tag Definer (DEF_TEX)
#tag LoadNow (1)

##define (F_BTN LEFT) as <FRAME_2A>
#tag Image = (S_BTN_LEFT)

##define (BTN_UTIL_LEFT) as <BUTTON_2C>
#tag State C NORMAL , -, NONE , NONE , -)
#method (ON_OVER , CH_CRS , X_OVER , NORMAL , F_BTN_LEFT , NONE
#method (ON_LCLK , CH_NAV , X_ULFT , NORMAL , F_BTN_LEFT , A _BEEP_O1
#tag Region (8, 30)

.j-r-- f TR ! 4, r-—-— r---r [l =] -r

o

-
T

' -

#tag Region
#tag Region

##define (S_BTN_RIGT) as <SURFACE>
#tag File "'__./Demo_Common/Files_Media/GuilL2/Btn_Util_Rigt_C.bmp"
#tag Alpha *_./Demo_Common/Files_Media/GuilL2/Btn_Util_Rigt_X.bmp"
#tag Definer (DEF_TEX)
#tag LoadNow (1)

##define (F_BTN_RIGT) as <FRAME_2A>
#tag Image = (S_BTN_RIGT)

##define (BTN_UTIL_RIGT) as <BUTTON_2C>
#tag State NORMAL -, NONE , NONE , -)
#method ON_OVER , CH_CRS , X_OVER , NORMAL , F_BTN_RIGT , NONE ,
#method CH NAV , X URGT , NORMAL , F BTN RIGT , A BEEP 01 ,
#tag Region
#tag Region
#tag Region

T.Valkov@(c)2000-2005@@@
0@

PRODUCT_040701_DEMOS
SECTION: APPLICATION GENERAL PURPOSE UTILITY BUTTONS

##define (S_BTN_UNIV) as <SURFACE>
#tag File **_./Demo_Common/Files_Media/GuilL2/Btn_Util_UNIV_C.bmp"
#tag Alpha **__/Demo_Common/Files_Media/GuiL2/Btn_Util_UNIV_X.bmp*
#tag Definer ¢ DEF_TEX)
#tag LoadNow (1)

##tdefine (F_BTN_UNIV) as <FRAME_2A>
#tag Image = (S_BTN_UNIV)

##define (BTN_UTIL_UNVA) as <BUTTON_2C>

#tag State NORMAL -, NONE , NONE , -)

#method (ON_OVER , CH CRS , X OVER , NORMAL , F_BTN_UNIV |, NONE

#method (ON_LCLK CH_NAV , X_UNVA , NORMAL , F_BTN_UNIV , A BEEP_O1 ,
#tag Region (13, 13
(
(
(¢

#tag Region 43 , 13
#tag Region 43 , 31
#tag Region 13, 31

e '-’"—.-—,‘pr_— Epr-—-—-lr_'"-r R

o

-
T

' -

##define (BTN_UTIL_UNVB) as <BUTTON_2C>
#tag State NORMAL , , NONE -)
#method ON_OVER , NORMAL F_BTN_UNIV , NONE
#method ON_LCLK NORMAL F_BTN_UNIV , A _BEEP 01 ,
#tag Region 13, 13
#tag Region 43 ,
#tag Region 43 ,
#tag Region 13 ,

31

##define (BTN_UTIL_UNVC) as <BUTTON_2C>
#tag State NORMAL , NONE -)
#method ON_OVER , NORMAL F_BTN_UNIV , NONE
#method ON_LCLK NORMAL F_BTN_UNIV , A _BEEP_O1 ,
#tag Region 13 , 13
#tag Region 43 , 13
#tag Region 43 , 31
#tag Region 13 , 31

##define (BTN_UTIL_UNVD) as <BUTTON_2C>

#tag State NORMAL , NONE -)

#method (ON_OVER NORMAL F_BTN_UNIV , NONE
#method (ON_LCLK NORMAL F_BTN_UNIV , A BEEP_O1 ,
#tag Region (13, 13

#tag Region (43, 13

#tag Region (43, 31

#tag Region (13, 31

T.Valkov@(c)2000-2005000
0@

PRODUCT_040701_DEMOS
SECTION: APPLICATION FONTS GENERATION

#ttdefine (FN_INFO14) as
#tag Foundry "Lucida Console"
#tag Template (DEF_TEX
#tag Height 14
#tag Weight 800
#tag TextClr CL_DKBLU
#tag BackCIr
#tag AlignH
#tag AlignV
#tag ExpandW
#tag ExpandH

TXTINS_LFT
TXTINS_MID

5
5

NI\ NN

AAAAAAAAA

—

.j'-—r:'_' .' :._'-:;—.f ! -rl:E‘! r"--_'—'r_'"'_,r ORTErI=r I':_’r .|'_‘-‘

' -

##define (FN_INFO12) as <FONT_3A>
#tag Foundry
#tag Template (
#tag Height
#tag Weight
#tag TextClr
#tag BackCIr
#tag AlignH
#tag AlignV
#tag ExpandW
#tag ExpandH

TXTINS_LF
TXTINS_MI

AAAAAAAAA

##define (FN_INFO10) as <FONT_3A>
#tag Foundry "Verdana"
#tag Template (
#tag Height
#tag Weight
#tag TextClr
#tag BackCIr
#tag AlignH
#tag AlignV
#tag ExpandW
#tag ExpandH

)

80
CL_DKRE

TXTINS_MI

X
0
D
TXTINS_ LFT
D
5
5

0)
)
)
)
)
D)
)

ANAAAAAAA

##tsave (FN_INFO14) in (*'..\Demo_Common\Files_Media\Fonts\Font_INFO14_C.bmp'™) alpha in ('..\Demo_Common\Files_Media\Fonts\Font_INFO14_X._bmp')
##save (FN_INFO12) in ('..\Demo_Common\Files_Media\Fonts\Font_INF012_C.bmp™) alpha in (..\Demo_Common\Files_Media\Fonts\Font_INFO12_X_bmp')
##tsave (FN_INFO10) in ('..\Demo_Common\Files_Media\Fonts\Font_INFO10_C.bmp™) alpha in (..\Demo_Common\Files_Media\Fonts\Font_INFO10_X.bmp')

##delete (FN_INFO14)
##delete (FN_INFO12)
##delete (FN_INFO10)

0@

0@

@ PRODUCT_040701_DEMOS

@ SECTION: APPLICATION FONTS RELOADING IF GENERATION IS DONE
0@

0@

T.Valkov@(c)2000-200500@
@@

##tdefine (FN_INFO14) as <FONT_3A>
#tag ImgFile . .\Demo_Common\Files_Media\Fonts\Font_INFO14_C.bmp"
#tag AlfFile . .\Demo_Common\Fi les_Media\Fonts\Font_INFO14_X.bmp"
#tag XfdFile *..\Demo_Common\Files_Media\Fonts\Font_INFO14 C.xfd"
#tag Template DEF_TEX)
#tag AlignH TXTINS_LFT)
#tag AlignVv TXTINS_TOP)

.j-r-- f TR ! 4, r-—-— r---r [l =] -r

' -

o

f]

##define (FN_INFO12) a
#tag ImgFile = "
#tag AlfFile
#tag XfdFile
#tag Template
#tag AlignH
#tag AlignV

#ttdefine (FN_INFO10)
#tag ImgFile '
#tag AlfFile
#tag XfdFile
#tag Template
#tag AlignH
#tag AlignV

<FONT_3A>

-\Demo_Common\Fi les_Media\Fonts\Font_INFO12_C.bmp"
-\Demo_Common\Fi les_Media\Fonts\Font_INFO12_X.bmp"
-\Demo_Common\Fi les_Media\Fonts\Font_INFO12_C.xfd"

DEF_TEX)
TXTINS_LFT)
TXTINS_TOP)

<FONT_3A>

. .\Demo_Common\Files_Media\Fonts\Font_INFO10_C.bmp"
-\Demo_Common\Fi les_Media\Fonts\Font_INFO10_X.bmp"
-\Demo_Common\Files_Media\Fonts\Font_INFO10_C.xfd"

DEF_TEX)
TXTINS_LFT)
TXTINS_TOP)

T.Valkov@(c)2000-200500@
e

PRODUCT_040701_DEMOS
SECTION: APPLICATION DIAGNOSTIC INFORMATION DISPLAY COMPONENTS

##tdefine <SYS_VARIABLE>
##define <SYS_VARIABLE>

##define (TX_FPS) as <TEXTOUT_2A>
#tag Plate = (

#tag Value =

(VI_FPS , VARTYPE_FLT , O.
0

0)
(VI_GPS , VARTYPE_FLT , -0

)

- D)
VI_FPS , ., "FPS:%6.1f" , FN_INFO14)

(_
##define (TX_GPS) as <TEXTOUT_2A>

#tag Plate (
#tag Value (

##define (PG_INFO_FPS) as <PAGE_2A>
(

#tag Anchor
#tag Region
#tag Element
#tag Element

-,)
VI_GPS , , "GPS:%6.1f" , FN_INFO14)

TX_FPS
TX_GPS

—

.j'-—r:'_' .' :._'-:;—.f ! -rl:E‘! r"--_'—'r_'"'_,r ORTErI=r I':_’r .|'_‘-‘

-

o

-
—————
o

##define <SYS_VARIABLE> VI_VPF , VARTYPE_INT ,
##define <SYS_VARIABLE> VI_SPF , VARTYPE_INT ,
##define <SYS_VARIABLE> VI_LPF , VARTYPE_INT ,

##define (TX_VPF) as <TEXTOUT_2A>

#tag Plate = (-

#tag Value = (VI_VPF , “VPF:%6d"™ , FN_INFO14)
##define (TX_SPF) as <TEXTOUT_2A>

#tag Plate = (-,

#tag Value = (VI_SPF , "SPF:%6d" , FN_INFO14)
##define (TX_LPF) as <TEXTOUT_2A>

#tag Plate

#tag Value

VI_LPF | “LPF:%6d" , FN_INFO14)

##define (PG_INFO_)
#tag Anchor
#tag Region
#tag Element
#tag Element
#tag Element

<PAGE_2A>

TX_VPF 0
TX_SPF 18
TX_LPF 36

<

he)

T
AAAAAN A

Q

0

##define <SYS_VARIABLE> = (VI_ VARTYPE_INT ,
##define <SYS_VARIABLE> = (VI_MPF VARTYPE_INT ,

##define (TX_TPF) as <TEXTOUT_2A>
#tag Plate = (-,)]
#tag Value = (VI_TPF , , "TPF:%6d"™ , FN_INFO14)
##define (TX_MPF) as <TEXTOUT_2A>
#tag Plate -, D
#tag Value VI_MPF , , "MPF:%6d" , FN_INFO14)
##tdefine (PG_INFO_
#tag Anchor
#tag Region
#tag Element
#tag Element

<PAGE_2A>

TX_TPF
TX_MPF

—
T
U
AAAANY AN
W)
n

##define <SYS_VARIABLE> = (VI_PUF , VARTYPE_INT ,

##tdefine <SYS_VARIABLE> (VI_VUF , VARTYPE_INT ,
##define (TX_PUF) as <TEXTOUT_2A>

#tag Plate = (-,)]

#tag Value = (VI_PUF , , "PUF:%6d"™ , FN_INFO14)
##define (TX_VUF) as <TEXTOUT_2A>

#tag Plate (-,)

#tag Value (VI_VUF , ., "VUF:%6d"™ , FN_INFO14)

#ttdefine (PG_INFO_PUF) as <PAGE_2A>
#tag Anchor
#tag Region
#tag Element
#tag Element

TX_PUF
TX_VUF

—

.j'-—r:'_' .' :._'-:;—.f ! -rl:E‘! r"--_'—'r_'"'_,r ORTErI=r I':_’r .|'_‘-‘

o

'D101E - Common GUI Script (10

3
-
R — —
o s

##define <SYS_VARIABLE> (VI_MGD VARTYPE_INT ,
##define <SYS_VARIABLE> (VI_MGM , VARTYPE_INT ,
##define <SYS_VARIABLE> (VI_MGS , VARTYPE_INT ,

##define (TX_MGD) as <TEXTOUT_2A>

#tag Plate = (-,)]

#tag Value = (VI_MGD , , "MGD:%6d" , FN_INFO14)
##define (TX_MGM) as <TEXTOUT_2A>

#tag Plate = (-

#tag Value = (VI_MGM , “MGM:%6d"" , FN_INFO14)
##define (TX_MGS) as <TEXTOUT_2A>

#tag Plate (

#tag Value

-,)]
(VI_MGS , ,

"MGS:%6d" , FN_INFO14)

=
@
=)
o/
[
7]

<PAGE_2A>

##tdefine (PG_INFO_|
#tag Anchor =
#tag Region
#tag Element
#tag Element
#tag Element

TX_MGD 0
TX_MGM 18
TX_MGS 36

i
AAAAA

##define <SYS_VARIABLE> (VI_MVD VARTYPE_INT ,
##define <SYS_VARIABLE> (VI_MW VARTYPE_INT ,
##define <SYS_VARIABLE> (VI_MvS VARTYPE_INT ,

##define (TX_MVD) as <TEXTOUT_2A>
#tag Plate = (-,)]
#tag Value = (VI_MVD , , "MVD:%6d"™ , FN_INFO14)
##define (TX_MVM) as <TEXTOUT_2A>
#tag Plate = (-,
#tag Value = (VI_MVWM , “MVM:%6d™ , FN_INFO14)
##define (TX_MVS) as <TEXTOUT_2A>
#tag Plate (-,)]
#tag Value (VI_MVS , ,

“MVS:%6d" , FN_INFO14)

##define (PG_INFO_|
#tag Anchor
#tag Region
#tag Element
#tag Element
#tag Element

=
<
=
o/
()
n

<PAGE_2A>

TX_MVD 0
TX_MVM 18
TX_MVS 36

mwmnn
AAAAA

##define <SYS_VARIABLE>
##define <SYS_VARIABLE>

(VI_MGT , VARTYPE_INT ,
(VI_MVT , VARTYPE_INT ,

##define (TX_MGT) as <TEXTOUT_2A>

#tag Plate = (-, D)

#tag Value = (VI_MGT , ., "MGT:%7d™ , FN_INFO14)
##define (TX_MVT) as <TEXTOUT_2A>

#tag Plate (-,)]

#tag Value (VI_MVT , . UMVT:%7d" , FN_INFO14)

—

.j'-—r:'_' .' :._'-:;—.f ! -rl:E‘! r"--_'—'r_'"'_,r ORTErI=r I':_’r .|'_‘-‘

-

S e A e

D101E - Common GUI Script (11J

' -

##define (PG_INFO_MTT) as <PAGE_2A>
#tag Anchor = (-
#tag Region
#tag Element
#tag Element

TX_MGT
TX_MVT

ee

ee

ee PRODUCT_040701_DEMOS

ee SECTION: APPLICATION DIAGNOSTIC PANNEL COMPOSITION
@@

ee

##define (S_BTN NEXTOVR) as <SURFACE>
#tag File ./Demo_Common/Files_Media/GuilL2/Btn_Nav_NextOvr_C.bmp"
#tag Alpha = R /Demo_Common/FlIes_Medla/GU|L2/Btn_Nav_NextOvr_X bmp**
#tag Definer = (DEF_TEX)

##define (F_BTN_NEXTOVR) as <FRAME_2A>
#tag Image = (S_BTN_NEXTOVR)

##define (BTN_NAV_NEXT) as <BUTTON_2C>

#tag State NORMAL , NONE , NONE , NONE , -)

#method CH CRS , X _OVER , NORMAL , F_BTN_NEXTOVR , NONE
#method CH_NAV , X_NEXT , NORMAL , -, A_BEEP_O1 ,
#tag Region
#tag Region
#tag Region
#tag Region

(
(
(
(
(

58
(25

##define (S_BTN HALTOVR) as <SURFACE>
#tag File = . ./Demo_Common/Files_Media/GuilL2/Btn_Nav_HaltOvr_C.bmp"
#tag Alpha ../Demo_Common/Files_Media/GuilL2/Btn_Nav_HaltOvr_X.bmp"
#tag Definer (DEF_TEX)

##define (F_BTN_HALTOVR) as <FRAME_2A>
#tag Image = (S_BTN_HALTOVR)

##define (BTN_NAV_HALT) as <BUTTON_2C>
#tag State ¢ NORMAL , NONE -)
#tag State PAUSED NONE)

#method ON_OVER NORMAL F_BTN HALTOVR
#method
#method
#method
#method
#method
#method
#method

NONE
ON_LCLK NORMAL -
A_BEEP_01

NONE

(,
(.
(_)
(ON_LCLK , B g NORMAL

(ON_OVER , X & PAUSED . F_BTN_HALTOVR
(ON_LCLK , PAUSED -
(ON_LCLK , PAUSED -
(EXE_STATE , PAUSED)

(EXE_STATE , NORMAL)

A_BEEP_01

,‘r ! 4! r-—" r'--r [l =] -r

o

'D101E - Common GUI Script (12

S e A e

-
—————
e o

#tag Region
#tag Region
#tag Region
#tag Region

25

##define (RT_INFO) as <ROTATOR_2A>
#tag Anchor
#tag Rewind
#tag Selector
#tag Selector
#tag Element
#tag Element
#tag Element
#tag Element
#tag Element
#tag Element
#tag Element
#method

YES
BTN_NAV_NEXT
BTN_NAV_HALT

PG_INFO_FPS
PG_INFO_VPF
PG_INFO_TPF
PG_INFO_PUF
PG_INFO_MGD
PG_INFO_MVD
PG_INFO_MTT

EXE_TNCR

L L L 1 A L VO I VO |
ANANAAAAAAAAAA
N NN\

T.Valkov@(c)2000-200500@
@@ @@
ee
ee PRODUCT_040701_DEMOS
ee SECTION: APPLICATION INCLUDABLE DISPLAY ELEMENTS
ee
ee

##define (PG_GUI_BASE) as <PAGE_2A>
#tag Anchor
#tag Region
#tag Element
#tag Element
#tag Element
#tag Element
#tag Element
#tag Element
#tag Element
#tag Element
#tag Element
#tag Element
#tag Element
#tag Element
#tag Element
#tag Element
#tag Element
#tag Element

F_GUI_A
F GUI'B
F_GuI_C
F GUID
F GUI_E
F GUI_F
F GUI G
F_GUI_H
RT_INFO
BTN_TERM
BTN_UTIL_LEFT
BTN_UTIL_RIGT
BTN_UTIL_UNVA
BTN_UTIL_UNVB
BTN_UTIL_UNVC
BTN_UTIL_UNVD

N/ o/ o/ o/ N/ NN NN NN NN

##define (PG_GUI_OVER
#tag Element
#tag Element
#tag Element

as <PAGE_2A>
AP1_CURSOR
API_PJAY
API1_KJAY

AAAANY AAAAAAAAAAAAAAAAAA

—

.j'-—r:'_' .' :._'-:;—.f ! -rl:E‘! r"--_'—'r_'"'_,r ORTErI=r I':_’r .|'_‘-‘

- D101E - Common GUI Script

o ek,

& Changes in the common GUI script

= Although most items in the common GUI script are already
familiar from before, there are several new components
and functions intended to support basic common needs
across all demos.

& Rotators

= One of the main visible changes is the diagnostic panel
division in sections, only one of which is displayed at time.

= A new separate button is used to flip between the “pages”
of the diagnostic panel. The new buttons are not built in
the GUI, but have their own default frame for each state.

= This is implemented using a <ROTATOR=> object, which
action is to flip sequentially between components

= A <ROTATOR=> object can contain anything — frames,
books, buttons, and is an extremely powerful control

Soon 02005
'

U mmmrmmng - [Sr e e nEne [EENENENA, Srmnes (=) =
Vel SudR TSR A e Moo PR \PUAS SERTES &) =200

& There are several new buttons with increased
complexity, that pays off in terms of power.

& Consider the <PAUSED= button:
= [he new button has two states — NORMAL and PAUSED.

= |n addition of sending signals to the system interface and
the cursor, when clicked, the button sends signals to itself

to switch state. These depend on the current button state.
= A button can have many states, with different appearance
and actions in every state.
& There are several new multi-state buttons

= Buttons that pause the application and send signals to the
rotator to flip the diagnostic display.

= Buttons that send general purpose signals, such as flipping
example rotators (green arrows).
& The common GUI has also a host of textouts to
drive the new diagnhostic outputs.

Q The user code driving the GUI (primarily an update of the
diagnostics data) can be also encapsulated in a common
file and included in all other demos:

#define PROD_NAME
#define PROD_VERS
#define INST_FILE
#define CORE_DUMP

NULL
NULL
NULL
"Files_Runtime//CoreDump.txt"

/7 //
/7 T.Valkov(c)2000-2004000//
//@ MODULE: Application Definition s/
//@ GROUPS: User custom code @s/
/7 //
/7 //

#define THEN_PRINT_INFO_TEXT Graficlnterface->PrintText(pX, pY, aText->Str, aFont); pY+=nL;
#define TEST_PRINT_INFO_TEXT_YN(Msg) \
if (CapsTest) then{ \
aText->Assign((Msg), "Y'™):
Yelse{
aText->Assign((Msg), "N');
endif} THEN_PRINT_INFO_TEXT;

/7 //
/7 T.Valkov(c)2000-2004000//
//@ MODULE: Global Variable Declaration s/
//@ GROUPS: User custom code @s/
/7 //
/7 //

DECLARE_GLOBL
DECLARE_GLOBL
DECLARE_GLOBL
DECLARE_GLOBL

DECLARE_GLOBL
DECLARE_GLOBL
DECLARE_GLOBL
DECLARE_GLOBL
DECLARE_GLOBL
DECLARE_GLOBL
DECLARE_GLOBL

SX_Variable*
SX_Variable*
SX_Variable*
SX_Variable*

SX_Variable*
SX_Variable*
SX_Variable*
SX_Variable*
SX_Variable*
SX_Variable*
SX_Variable*

avarFpPS
aVarGPS
aVarVPF
avVarFPF

avVarMGm
avarMGS
aVarMvD
avarMvMm
avarMvs
avarMGT
aVarMvT

Variable
Variable
Variable
Variable

Variable
Variable
Variable
Variable
Variable
Variable
Variable

containing
containing
containing
containing

containing
containing
containing
containi

i
containing
containing

performance
performance
performance
performance

performance
performance
performance
performance
performance
performance
performance

=

MODULE: Common_PerformanceDisplay_Init()

GROUPS: User custom code

//0@

//@ This module contains user-supplied instructions to be executed prior to scene rendering

//0@
//0
//

//

T.Valkov(c)2000-2004000//

@//
as/
as/
@//
@s/
(4
as/
//

7/

void Common_PerformanceDisplay_Init (void* VArg)
BGN_ACTOR_CODE{

/* Obtain pointers to the Principia objects defined in the script */

avarFPS
aVarGPS
avarVPF
aVarFPF
aVarPPF
aVarSPF
avarTPF
aVarMPF
avarLPF
aVarPUF
avarVUF
aVarMGD
avarMGM
aVvarMGS
aVarMvD
avarmMvm
aVarMvs
aVvarMGT
aVarMvT

(SX_Variable*)
(SX_Variable*)
(SX_Variable*)
(SX_Variable*)
(SX_Variable*)
(SX_Variable*)
(SX_Variable*)
(SX_Variable*)
(SX_Variable*)
(SX_Variable*)
(SX_Variable*)
(SX_Variable*)
(SX_Variable*)
(SX_Variable*)
(SX_Variable*)
(SX_Variable*)
(SX_Variable*)
(SX_Variable*)
(SX_Variable*)

Principia->GetReferenceTo(""VI_FPS™);
Principia->GetReferenceTo("'VI GPS")'

Principia->GetReferenceTo("'VI_VPF"
Principia->GetReferenceTo("'VI_FPF"
Principia->GetReferenceTo("'VI_PPF'
Principia->GetReferenceTo("'VI_SPF'
Principia->GetReferenceTo("'VI_TPF"
Principia->GetReferenceTo("'VI_MPF’
Principia->GetReferenceTo("'VI_LPF'
Principia->GetReferenceTo("'VI_PUF'
Principia->GetReferenceTo("'VI_VUF"
Principia->GetReferenceTo("'VI_MGD"
Principia->GetReferenceTo("'VI_MGM'
Principia->GetReferenceTo("'VI_MGS'
Principia->GetReferenceTo(*'VI_MVD*
Principia->GetReferenceTo(""'VI_MVM"
Principia->GetReferenceTo("'VI_] “Mvs
Principia->GetReferenceTo(""VI_MGT"

Principia->GetReferenceTo(""VI_MVT");

/* Activate the Principia general debug signal */

Api_SigDebug =

END_ACTOR_CODE}

new PX_Signal (""CH_SYS",

X_DEBUG™) ;

//

SRS AT ST

/7 //
/7 T.Valkov(c)2000-20040@@//
//@ @s/
//@ MODULE: Common_PerformanceDisplay_Main() as/
//@ GROUPS: User custom code @s/
//@ @s/
//@ This module contains user-supplied instructions to be executed during scene rendering.. as/
//0@ @s/
//0 @//
/7 //
/7 //

void Common_PerformanceDisplay_Main (void* VArg)
BGN_ACTOR_CODE{

/* Update the value of the display variables with the appropriate internal metrics */
aVarFPS->Assign(Api_PerfMonitor->PerfRepFPS) ;
aVarGPS->Assign(Api_PerfMonitor->PerfRepGPS);
aVarVPF->Assign(Api_PerfMonitor->PerfRepVPF/1000) ;
aVarFPF->Assign(Api_PerfMonitor->PerfRepFPF/1000) ;
aVarPPF->Assign(Api_PerfMonitor->PerfRepPPF);
aVarSPF->Assign(Api_PerfMonitor->PerfRepSPF) ;
aVarTPF->Assign(Api_PerfMonitor->PerfRepTPF);
aVarMPF->Assign(Api_PerfMonitor->PerfRepMPF) ;
aVarLPF->Assign(Api_PerfMonitor->PerfRepLPF);
aVarPUF->Assign(FIt(Api_PerfMonitor->PerfRepPUF/1024)/1024.0F);
aVarVUF->Assign(flt(Api_PerfMonitor->PerfRepVUF/1024)/1024.0F);
aVarMGD->Assign(Flt(Api_PerfMonitor->PerfMGD/1024)/1024 .0F);
aVarMGM->Assign(flt(Api_PerfMonitor->PerfMGM/1024)/1024.0F);
avVarMGS->Assign(flt(Api_PerfMonitor->PerfMGS/1024)/1024.0fF);
aVarMVD->Assign(flt(Api_PerfMonitor->PerfMVD/1024)/1024.0F);
aVarMVM->Assign(Flt(Api_PerfMonitor->PerfMVM/1024)/1024.0F);
aVarMVS->Assign(flt(Api_PerfMonitor->PerfMVS/1024)/1024.0fF);
avVarMGT->Assign(Flt(Api_PerfMonitor->PerfMGT/1024)/1024.0fF);
avVarMVT->Assign(flt(Api_PerfMonitor->PerfMVT/1024)/1024.0F);

END_ACTOR_CODE}

& Note that instead of calling ::FreePrint to display the text,
the common GUI updates variables connected to each
textout. This is a much more robust method.

=

<

matter of one line of script include in our demo:

##tparse "../Demo_Common/Files_Scripts/Module_GUIDEM.cfg"

and include+two calls in our user code !!!

#include "*_./Demo_Common/Files_Code/Module_GUIDEM.cpp"

void User_Scene_Init (void* VArg)
BGN_ACTOR_CODE{

/* Execute initialization for the common performance display components */
Common_PerformanceDisplay_Init(VArg);

/* Local instructions */

END_ACTOR_CODE}

void User_Scene_Main (void* VArg)
BGN_ACTOR_CODE{

/* Execute scene loop operations for the common performance display */
Common_PerformanceDisplay_Main(VArg);

/* Local instructions */

END_ACTOR_CODE}

S -2 00
SeriEs ()R 20002005

-
<
o

& Our demo script can now focus at the new task
at hand without being cluttered with the GUI.

##define (S_REGO03_S) <SURFACE>
#tag Definer = (DEF_S2D)
#tag File " . ./Demo_Common/Files_Media/Calibration/Image_Reg03.bmp*
#tag LoadNow 1)

##define (S_REG30_ <SURFACE>
#tag Definer DEF_TEX)
#tag File " . ./Demo_Common/Files_Media/Calibration/Image_Reg30.bmp"
#tag LoadNow 1)

##tdefine (F_REGO3_S) <FRAME_2A>
#tag Image = S_REGO03_S)

##define (F_REG30_T) as <FRAME_2A>
#tag Image = (S_REG30_T)

##define (PG_RTEST_S) as <PAGE_2A>
#tag Anchor =
#tag Region
#tag Element
#tag Element
#tag Element
#tag Element
#tag Element
#tag Element
#tag Element
#tag Element
#tag Element

F_REGO5_S
F_REGO5_S
F_REGO5_S
F_REGO5_S
F_REG11_S
F_REG32_S
F_REG30_S
F_REGO3_S
F_REGO4_S

FNN
AOUINOOO®OO |
=

ANAAAAAAAAAA
NN
S

OONOOO®O |
N/ o/ o/ o/ o/ o/ N/ N NN

##tdefine (PG_RTEST_T) as <PAGE_2A>
#tag Anchor
#tag Region
#tag Element
#tag Element
#tag Element
#tag Element
#tag Element
#tag Element
#tag Element
#tag Element
#tag Element

F_REGO5_T
F_REGO5_T
F_REGO5_T
F_REGO5_T
F_REG11 T
F_REG32_T
F_REG30_T
F_REGO3_T
F_REGO4_T

=
OCONOOO®O |

N
AOUINODOOOO |

I

NN
)

ANAAAAAAAAAA
N/ o/ o/ o/ o/ o/ N/ N N N

—
4=

& After defining the test pattern images, the script
defines their background and assembles the
scene (including the GUI top and bottom pages).

##define (S_LEAF_01) as <SURFACE>
#tag File *__./Demo_1.01.E_BasicGUI/Files_Media/lImage_MatteBack-C.bmp"
#tag Alpha " ../Demo_1.01.E_BasicGUI/Files_Media/lImage_MatteBack-X.bmp"
#tag Definer [¢ DEF_TEX)
#tag LoadNow (1)

##tdefine (F_LEAF_01) as <FRAME_2A>
#tag Image = (S_LEAF_01)

##define (TX_FREE) as <TEXTOUT_2A>
#tag Plate C ,
#tag Value (¢ , FN_INFO12)

##define (PG_LEAF 01) as <PAGE_2A>
#tag Anchor = ()
#tag Region = (-,

T.Valkov@(c)2000-2005@@@
@@ PRODUCT_040701_DEMOS @@
0@ SECTION: APPLICATION SCENE COMPONENTS 0@

##tdefine (PG_MAIN) as <PAGE_2A>
#tag Anchor
#tag Region
#tag Element
#tag Element
#tag Element
#tag Element

F_BACK_01
PG_GUI_BASE
PG_LEAF 01
PG_GUI_OVER

##define (BK_MAIN) as <BOOK_2A>
#tag StartOpen C 1)
#tag StatelD (MAIN , -
#tag Element (MAIN , - PG_MAIN ,

##define (SCENE_MAIN) as <SCENE 2A>
#tag VarStop = (VS_TERM)
#tag Element = (-, -

If

The demo code likewise uses includes to take
care of the common GUI tasks, and focuses on
the display of the test pattern panel.

DECLARE_GLOBL CX_Frame2A* aFreeFr
DECLARE_GLOBL CX_Textout2A* aFreeTx
DECLARE_GLOBL CX_Page2A* aPgTstS
DECLARE_GLOBL CX_Page2A* aPgTstT
DECLARE_GLOBL DWORD AdapterID
DECLARE_GLOBL int XIns
DECLARE_GLOBL int fYlns
DECLARE_GLOBL int fYDel
DECLARE_GLOBL LONGSTRING WrkStr

NULL; // Frame background for free text
NULL; /7 Working textout for free text display
NULL; // Registration test page for surfaces
NULL; // Registration test page for textures
0x00; // Adapter ID index
0x00; // Free text initial insertion point
0x00; // Free text initial insertion point

20; // Free text interline spacing
*"\0"; // Working string for free text display

/7 //
/7 T.Valkov(c)2000-20040@@//
//@ @//
//@ MODULE: User_Scene_Init() @s/
//@ GROUPS: User custom code @//
//0@ @s/
//@ This module contains user-supplied instructions to be executed prior to scene rendering @//
//0@ @s/
//0 @s/
/7 //
/7 //

void User_Scene_Init (void* VArg)
BGN_ACTOR_CODE{

/* Execute initialization for the common performance display components */
Common_PerformanceDisplay_Init(VArg);

/* Obtain pointers to the Principia objects defined in the user script */
aFreeFr (CX_Frame2A®) Principia->GetReferenceTo("'F_LEAF_01");

aFreeTx (CX_Textout2A*) Principia->GetReferenceTo(""TX_FREE");

aPgTstS (CX_Page2A*®) Principia->GetReferenceTo("'PG_RTEST_S");
aPgTstT (CX_Page2A™) Principia->GetReferenceTo("'PG_RTEST_T");

END_ACTOR_CODE}

A page function is used to display the pattern and
Informational data (instead of doing it in the
script). Note how anchor positions are obtained.

void User_Page_FText (void* VArg)
BGN_ACTOR_CODE{

/* Get the insertion point of the free text page as origin for this display */
XIns = ((CX_Page2A*) VArg)->AnchorAbsX;

fYlns = ((CX_Page2A*) VArg)->AnchorAbsyY;

fyDel = 20;

/* Display the free frame and set the insertion point for text */
aFreeFr->Update(fXIns, fYIns);

XIns += fYDel;

fYlns += fYDel;

/* Generate and display free text: Adapter Name */

AdapterID = Graficlnterface->ScreenA;

sprintf(WrkStr,"ADAPTER: %s', Api_SysConfig->AdapterID[AdapterlID].Description);
aFreeTx->FreePrint(fXIns, fYIns, WrkStr);

fYlns += fYDel;

/* Generate and display free text: 0S */
sprintf(WrkStr,"0S: %s', Api_SysConfig->InfoOSName->Str);
aFreeTx->FreePrint(fXIns, fYlns, WrkStr);

fYIns += fYDel;

/* Generate and display free text: GS */

sprintf(WrkStr,"GS: DirectX %d.%d", Api_SysConfig->InfoDXVerA, Api_SysConfig->InfoDXVerB);
aFreeTx->FreePrint(fXIns, fYlns, WrkStr);

fYlns += fYDel;

/* Generate and display free text: Memory */
sprintf(WrkStr,"FREE MEMORY: %d kb", Api_SysConfig->InfoMEMAVI);
aFreeTx->FreePrint(fXIns, fYlns, WrkStr);

fYlns += fYDel;

/* Calculate free disk space on volume holding current directory */

int k = Api_SysConfig->InfoDSDFree[0];

for (int i=0; i<Api_SysConfig->InfoDSDn; i++) begin{
if (Api_SysConfig->InfoDSDRoot[i]->Str[0]==Api_SysConfig->InfoEXEDIR->Str[0])
k = Api_SysConfig->InfoDSDFree[i];

endif}

Q In this demo, we desire to display components
from within the user code. This is done with calls
to ::Update() and ::FreePrint() in the page fcn.

/* Generate and display free text: Disk Space */
sprintf(WrkStr,"FREE DISK: %d mb™, k);
aFreeTx->FreePrint(fXIns, fYlns, WrkStr);

fYlns += fYDel; fYIns += fYDel;

/* Display the registration pattern test pages */

strcpy(WrkStr,"Rendering registration test: Memory Surface Implementation™);
aFreeTx->FreePrint(fXIns, fYlIns, WrkStr); fYIns += fYDel;
aPgTstS->Update(fXIns, fYIns); fYIlns += (40);

/* Display the registration pattern test pages */

strepy(WrkStr,""Rendering registration test: Managed Texture Implementation™);
aFreeTx->FreePrint(fXIns, fYIns, WrkStr);

fYIns += fYDel;

aPgTstT->Update(fXIns, fYIns);

fYlns += (50);

/* Display the application status */
if (Principia->Paused) then{

strepy(WrkStr,"Principia application clock is HALTED.");
Yelse{

strepy(WrkStr,"Principia application clock is running."™);
endif}
aFreeTx->FreePrint(fXIns, fYlns, WrkStr);

END_ACTOR_CODE}
BGN_PRINCIPIA_MAIN (PROD_NAME, PROD_VERS, ROOT_NAME, INST_FILE, CORE_DUMP){

/* Bind the user custom code to particular application objects */
Principia->BindUserProclnit ("SCENE_MAIN" , User_Scene_Init);
Principia->BindUserProcMain (""SCENE_MAIN" , User_Scene_Main);
Principia->BindUserProcTerm ("'SCENE_MAIN" , User_Scene_Term
Principia->BindUserProcMain ("PG_LEAF_01" , User_Page_FText

J);
)s

/* Execute the application main Principia script */
Principia->ParseFile(CONF_FILE);

END_PRINCIPIA_MAIN}

Py —— = =
RIATHE T AT Dol

& Virtually all graphic applications use flat (2D) images for
GUI elements, buttons, user interaction dialogs...etc.

= Principia provides the CX Frame** series of control components to
display such images

& There are two common ways for rendering flat 2D frames:

= Direct memory copy (blit) of the frame image to the display buffer.
This does not involve 3D rendering, and is 100% accurate, but
does not provide the full 3D GPU special effects such as
transparency, alpha mapping or blending.

= [his method will be referred to as SURFACE-based, because it uses
GPU plain memory surfaces (and platform objects).

= Render an artificially positioned 3D rectangle on the GPU with the
Image as mapped texture. This is required to render transparent
frames or make use of GPU-based image processing effects.

= This method will be referred to as TEXTURE-based, because it
uses GPU texture memory (and platform objects).

J_J._..._;J AR —;r-'f_z‘q-;—__-_-_r_f-i—_,ﬂ,-_-_r-,r,r__...-_ Ir.'-l.'_.., (= :.f.(f‘z@ﬂ _';t‘r I’:J f‘f-‘(" "‘.l"‘f"F_

_
-

-

-

D101E — Surfaces and Textures

=
- _"'\\ - L

i N

& Besides flat frame display, surfaces/textures
have a wide variety of uses in multimedia:
= Sprite images
= Textures for 3D geometries
= Environment maps for 3D geometries
= \ertex data maps
=» Numeric data maps
= And more...

& Principia combines GPU surfaces and textures in
a single fundamental graphic component:
= Implemented in the GX_Surface object
= Created using the <SURFACE=> tag in script

101E — Surfaces and Textures

\

& In fact, the Principia <SURFACE=> has many
descriptive characteristics for various uses:

= Driver surface type (surface, texture, cube, volume).
= Format for encoding data (ASBR8G8BS8, L16 ...etc).
= Memory location code (System, Device, Managed).
= Usage hint code (RT, Depth-Stencil, dynamic ...etc).
=» Mip levels depth for mipmapping
=% Intrinsic filter codes for driver access
= Locking code for DMA access.
= And much more ...

& These properties are encapsulated in a surface

definer object. Principia spares the user from
the internal complexity of their management.

‘
5 2005
'

N Lo PR G P S e ff:—J (OO =Za0,0,5;

& The choice of surface format and file form is
closely determined by the intended use:

=» Regular texturing of 3D primitives: X8/A8R8G8B8
stored in BMP/PNG files.

= Low-precision numeric data: L8/X8R8G8B8 8-bit
grayscale stored in BMP/PNG files.

= High-precision numeric data: L16/X16R16G16B16
16-bit/32-bit grayscale stored in PNG files.

#% Specialized shader usage in render maps: G16B16 or
F32 procedural formats channel-stored in PNG files.

& Principia makes format and file form
management a simple matter of entering the
desired format in the script!

5 D200

N Lo PR G P S e ff:—J (OO =Za0,0,5;

-
-
@

I"f_.—)

D101E — Surfaces and Textures

@ The surface type used is controlled by the definer given
to the script when creating a <SURFACE> image object.

=% In the standard library include, <DEF TEX> specifies a TEXTURE type,
while <DEF_S2D> specifies a linear memory SURFACE type.

Q The two funny patterns displayed in the free text panel.
= Renditions of several small images at carefully chosen pixel positions.
= Top/Bottom patterns use the DEF_S2D and DEF _TEX definers respectively.

Q Many applications require single-pixel accuracy when
positioning and rendering of flat images.

=% Different environments may have different texture sampling and pixel
coordinate round-off conventions, that complicate the use of DEF_TEX
definers for rendering flat images as mapped textures.

Principia makes this considerable complexity transparent to the user. All
you need to do is provide a definer and decide where to display the image.
When porting to new environments (e.g. other than Windows/DirectX), the
registration test provided in this demo will reveal any problems quickly.

Images with 1-pixel thickness may not be rendered accurately using the
TEXTURE method. These images should be rendered using the SURFACE
method or have an additional row of pixels added.

T sy e = [omemer
el SR

&

PR J,"J’-@ﬂ_{;'yﬂ._ﬁ' SErEs: :’;f_-j-j, ‘Fe@"ﬁ’_;'.-'- 2] .

D101E — Surfaces and Textures

=
- _"'\\ - L

i N

Q Direct access of surface (pixel) data
=» Must be preceded by ::StartDmaMode() call
=% Must be terminated by ::StopDmaMode() call

=% Individual pixel access by ::Wrte/ReadPixel() calls
e Value: raw pixel, float, ARGB dwords, ARGB floats
e Address mode: 1J or UV

e Function automatically interprets the format

=% For faster access to entire contents, use the
GX_Surface::Import/ExportData() call, which
returns SX_Grid1R color or float objects.

= For truly fast access by knowledge users, the DMA
calls expose the GX_Surface::GpuData pointer.

& Surface cannot be used by driver until DMA
ends. Principia access methods require DMA.

& The Principia system interface provides several
controllable, configurable user clocks, that
provide timing control for the application built.

= Clocks and timers are configured during the creation
of the system interface.

#% The clock state, time, units ...etc can be accessed
from within the user program via the Principia API.

@-A very basic function is to pause the main
application clock. This suspends the user
application without interrupting interaction

=% Here, this is done by sending the right signals to the
user interface from a control button. We also poll the
APl paused state to inform the user accordingly.

B

D101E — Diagnostics (1)

- i e 8

& The new diagnostic panel features a seemingly
bewildering array of performance indicators.

= They will all prove necessary when tuning and optimizing demanding
commercial-grade applications (or running on older GPUS).

& Per-Second Counters
= FPS: Full application frames per second counter

= GPS: Graphing frames per second. This is the what the application FPS
would be if it did nothing but render the image. The difference between
FPS and GPS measures the overhead of the user game code

& Per-Frame Counters, GPU Render Load
= VPF: Vertices rendered per frame. Key 3D metric.
=» FPF: Triangle faces rendered per frame. Key 3D metric.

=» PPF: Primitive render calls per frame. Key 3D metric.

U imse-rmmr il S R o e nnne e [B NI I AS - (=) DT mES -
U ESTERY =SudlR IE AT e T W5 LR U ..Ii:'.#" 2 O 0= 4

-

-3 Q Per-Frame Counters, GPU/CPU Operations Load

=» SPF: GPU state changes per frame. Typically associated with materials.
Since state changes are time-expensive, a good design minimizes SPF.

= TPF: Transformation changes per frame. Significant when running skeletal
animation models replicated across many objects. Includes geometry
transformations, material and lighting changes.

MPF: Matrix multiplications per frame. Important when running complex

skeletal models with multiple levels.

LPF: GPU memory locks per frame. Also an expensive operation, the fewer
the better. Typically, associated with dynamic changes of graphic content,
and with direct client application manipulation of graphic data.

& Per-Frame Counters, Client Application GPU DMA Flow

=% PUF: Pixel application flow rate in kB per frame. When the user generates
or moves image data on the fly, this counter measures the pixels moved
per frame in DMA mode. This is not a count of pixels rendered by the GPU.

=» VUF: Vertex application flow rate in kB per frame. When the user generates
or moves vertices on the fly, this counter measures the vertices moved per
frame in DMA mode. This is not a count of vertices rendered by the GPU.

& o Vo = e rrerrrere= [L==_ [&'= el = =200
= r-J.r-.r _‘r,___._.‘_ =R L ETEmL Al | fi SRS, ..IIJ, Jip-.l.ﬁ.f

e

~ ot O

D101E — Diagnostics (3)

.? & Memory Load —Graphic Buffers

= MGD: Requested memory load for the GPU in kB load into device memory.
This includes the primary display, swap-chain and depth buffer memory.

=» MGM: Requested memory load for the managed pool in terms of kB
attempted to load. The GS - if available - manages this load between GPU,
AGP and system in a way that the user cannot control.

=% MGS: Requested memory load for the system. This memory space is not

particularly suitable for fast rendering but it is easily accessible to the user.

& Memory Load — Vertex Buffers
= MVD: Vertex buffer kB load equivalent to MGD
= MVM: Vertex buffer kB load equivalent to MGM
=» MVS: Vertex buffer kB load equivalent to MGS

<& Memory Load — Totals
w» MGT: Total memory load from graphic buffers
= MVT: Total memory load from vertex buffers
=» MAT: Total memory load from allocated APl data

S 2000-2005 o
i

= T e e [E e e [e [=N ~ =] L
= UYESTERY SuAR IE AN T AE O e N U RS (&) ZO0R

<& Where does all this data come from?

= Api_SysConfig() is an automatic global Principia component that holds
extensive information on the current hardware and software platform.

=% Api_PerfMonitor() is an automatic global Principia component created in
DIAGNOSTIC mode (see next), that holds myriads of performance counters
on many things, ranging from GPU requests flow to box tests ...etc.

=» The graphic interface has its own internal counters (not polled here) used
for frame rate stabilization and internal GPU request flow optimization.
& There are two instances of internal frame-basis counters
from Api_PerfMonitor() — local and reported.
=» The local counter has the stats for the last frame rendered. The reported

counter is sampled at 500ms intervals. The GUI display uses the reported
counter. The local counter changes too fast to be displayable in a GUI.

Q By including the common .cfg and .cpp files of the
diagnostic display, any application can examine these
metrics, and identify performance bottlenecks such as
excessive locks, swaps or DMA moves.

E,

3) @v The output of diagnostics is controlled

by flags that can be defined in the user
application. Much of the data
generated by diagnostic is saved in the
core dump file, that must be defined as
shown.

The PCM_DEVELOPMENT_DIAG flag
acts as master controller for diagnostic
info. If the flag is O (default), diagnostic

code is not compiled and there is no
overhead whatsoever. Use this for
production code.

If the flag is 1, diagnostic data will be
generated on the fly as determined by
the other flags. When the API exits, the
signal state of the system interface will
be dumped in the specified diagnostic
file.

The PCM_DIAGMODE_PERFSTATS flag
generates the performance data shown
in our GUI panel.

// In APl main or USER main

#define PCM_DEVELOPMENT_DIAG 1
#define PCM_DIAGMODE_RANGETEST 1
#define PCM_DIAGMODE_PERFSTATS 1
#define PCM_DIAGMODE_PERFFPSDATA 1

// In USER main

#define CORE_DUMP "Files_Runtime//CoreDump.txt"

This creates a CoreDump.txt bucket in the Files_Runtime directory of
each demo. Among others, this core dump file features a snapshot of
the signal content of each channel of the system interface:

CO+1 =X_NULL+B6767CO,

C1+0 =

C2+4 =X_NORM+ESEOB8, X_NORM+E5EOB8, X_NORM+E5EOB8, X_NORM+ESEOBS,
C3+0 =

C4+0

C5+0

The format is

Channel# in order of definition + signals queued = signal 1D
list+address of signal generating object.

Here, there are no problems, except maybe for a gradual accumulation
of unprocessed cursor normal state signals.

— = T
B = G e e e
U o5 alslR S v AR T ER A=

o d o —d

'l oo OOOOOTOOT‘

«9 «oooococcczxco Oooodbmpoaooccooo oooccop orcro cooooocaudboc&coqooq o ! co o¢occ¢zo mm‘q“oo@‘

((u((((QEEEU X (@ (O OO u(q m@ﬂmm CCD QZ} W@O@ C(;CCGO m@o C(KQC(C((ZZ!D O

| | | | B | i I {11 TN TR 1
[CCC@C @O CHD @O .(((€8 ((((® ((((€€ (@ ((EEUI(((E(® AE((® (@(((BE((CB (E((E(((CCEE(BIC (€U (® (€ ((C(C(C(((@ ((C ((((e (t(’((((@€ (O (4(€ €(€ (€ (8 (C(@(EWC®

& The PCM_DIAGMODE_PERFFPS flag places in the core dump

<

streaming frame performance data, such as the frame
millisecond intervals shown above.

One can examine the stream to see how is peformance really
made up. In this example, we see the VSYNC forcing of the
monitor. The peak occurs when the application window is put

In the background. Overall, the application runs at 50fps
without problems.

s

iy Sy ._‘ﬁ-f’-" =r

2 S @ T i U e o e

NOTE Update Docs

’_f B i K -

Vo

i w (.'. LT, <

e

R0

—— I

;- Z ‘- :\'\.L.'-. - - - T '- - =
. B i [g s, [T e e e -] ey [WE=NEG . S emnmn () 2T GG
-] = = = = - VY ESTIERN STAR IEDE.;rfrr.r:.m_:‘;ﬂf” GUPULA SERTES) 208 E=-Z200
| g

I i - Ty = -] @

D101E — Summary

=3 o L, ey

@Created an improved encapsulated modular GUI
framework, that features all that is needed to
build self-contained mini-application demos.

& Introduced more fundamental concepts
= Surfaces and their types

= State-changing controls
=» Nesting of controls within controls

& Provided basic insight into how the user can
access some key pieces of the full Principia
diagnhostic and tuning toolbox without coding

= Rich performance statistics anytime
= Diagnostic levels and core dumps

il Principia ¥3.0.0 Demos

o s

e

o T AR - Ty = -] @

D101F — Basic Rendering

g “ L, @ 3

& Ok — so far, we had an arguably cool and
functional application interface, built with a
minimum of development effort.

& This is still a far cry from the worlds filled with
characters and objects of commercial games. '
Let’s take a step In this direction:

= Render an illuminated 3D object in empty space
= Show the coordinate axis of the space

= Show the basics of creating artificial environments
and rendering game play elements with Principia.

& Seem simple — but buckle up, for this demo
Introduces as many new concepts as all the
previous demos taken together!

—

-
-
@

e o PRI CIPI A S el C) 200 D-2005

& The components of multimedia entertainment
applications fall into three broad types
= Framework components, that enable the use and

realization of the application, but are not part of the
entertainment experience per se.

= Entertainment/media components, such as worlds,

characters, objects that create the entertainment
experience that absorbs the user.

= Supporting components, that exist behind the scenes
to implement the framework and entertainment
components, and deliver the product.

@- Principia provides a rich variety of components
of each type for creating fully immersive
multimedia entertainment applications. These
components are organized hierarchically.

D101F - Architecture Theory

& Major categories of Principia components. For more complete
information, please consult the Principia Reference Manual

Functions

Base components

Helper components

Data encapsulators

Input, output and communication devices
Interfaces

Animatronics components
Graphic components

Audio components

Effects

Controls

Viewers

Object primitives

Operations

Worlds and world subcomponents
Procedures

System components
Productization components

CEEEEEEELEELEEELLY

- . F = ¥ —— = I i Te = e]) = —
o Wesien SR [EnTermanren o PRI CIPIA Seriea o) 200 0-200%

& Demos 01A-01E introduced essentially framework
components, such as 2D interfaces and controls.

<& The object in D101F will be rendered as true 3D object
that is part of a world. This will require the use of several
new entertainment components

= Cameras and lights
=» Materials and shaders
= \ertex sets (geometry)
=» Meshes

= Kinexes

= Primitive objects

-

A world that contains the objects
A viewer to show what’s in this world

Q Although not very immersive, our simple sphere shows
the basic concepts for building complex realistic
multimedia environments with minimum effort.

mmmmrmen S f:'l-'. e -
W ESTER _:._J -f._ =

- 2 e R . g - B - -] @

D101F — New Concepts

- . . W e oW N

& Rendering framework

= A particular way to structure/sequence multimedia data
and deliver it to the GPU/CPU for presentation.

= Rendering frameworks can be nested (a high level
structure can have many implemented variants).

Q Principia v3 topmost rendering frameworks

= Scheduled programmable pipeline framework. The
application queues the presentation sequence for the GPU
before rendering. The GPU then renders the sequence
using programmable shaders. This is the standard for
today’s entertainment applications.

Scheduled fixed function pipeline framework. Same as
above, except that the GPU is managed as a state machine
with rendering states set by material. This is a legacy
rendering approach that still works well.

<& Most of the demos use shaders. You can read
chapter 1-11 for using the legacy fixed pipeline.

& At an abstract level, all current multimedia
applications feature a natural hierarchy

= Entertainment experience of games, movies...etc =
controlled progression of scenes evolving in time

& Principia implements the hierarchy as follows

=% Scenes = made up of control components, principally
books that implement user navigation

= Books = made up of control components, mainly
pages that implement context-sensitive content

= Page = collection of any control components that
constitute the content at a specific context and at a
specific point in the user experience.
& What's on the page that presents our beautiful

sculpture in its 3D world ?

e

ot o ek,

D101F — New Concepts

& World Viewer

= A fundamental control component that shows what is in the “world”
of our entertainment experience.

= An application may feature many viewers and other related controls.
There are many types of viewers. This demo features the simplest
VIEW _3A viewer.

& World

=» A fundamental container of the entertainment components. There
are many types of worlds built in Principia. This demo features the
simplest type of world, WORLD_3A.

=» \Worlds are made of layers, operations and may have many other
things, but we will leave these alone for now.

& Objects
=» One of the many things that a world can contain. Principia provides

many different object types. Our sculpture is one of the simplest.
Objects are made visible when the viewer renders the world.

e 002005
'

= Vmmmmmen o s [Ermemamr e e [P NG e () =
= U ESTERT S r"_f__'r....r_' A e Moo PR Wy S _‘F:_T,y O G= 0%,

e

ot o ek,

D101F — New Concepts

& Meshes:

= A mesh can be thought of as the smallest unit that can be rendered
independently. It is a self contained rendering atom. Most objects
are made of meshes.

=» A mesh is usually realized as a sequence of geometries, materials,
and few other optional items such as animation keyframes to be
rendered together.

& Geometry

=% Principia offers many ways to represent geometry. Here, we use the
simplest Vertex_Set3A - a set of 3D vertices that describe the
surface geometry of a mesh or a part thereof

& Materials

=» Materials are essential and intricate components. They specify how
the GPU will skin the 3D geometry and make it visible.

= Materials may contain shaders, GPU state and texture commands,
base surface material lighting properties, effects, and much more.

02005
'

e (e [e e e] e [N 0 E i] =
Y ES TR TR IENTER A e Moo PR \PUAS SERTES &) =200

-

e

d o Tk

D101F — New Concepts

& Camera

= A component that defines how the user is looking at the world and
objects therein, the lighting modality of the scene, where is the
Image rendered ...etc.

=% Principia provides a rich set of camera components ranging from
the simplest view port to complete cinematographic set-ups with

multiple lights, motion tracking and much more.

& Lights

=» Components that provide illumination effects for the world and
objects therein. This demo shows one of the simplest camera and
lighting implementations.

= Strictly speaking, we do not need light objects when rendering
with shaders, but they are a must when rendering with the fixed
function pipeline.

4
% 02005
'

= it S e e o, [e s i] e [N [(S gy {7l =
o Vel SudR TSR A e Moo PR G 2SS ERTE (=) =200

e

d o Tk

D101F — New Concepts

& Kinexes

= Kinexes are essential Principia components that hold location and
state information for object, and may additionally affect GPU
states when rendering.

= |nternally, location is described using the 4x4 matrix convention
commonly employed in 3D graphics. Principia handles both the

DirectX and OpenGL matrix row-column conventions.

= Kinexes provide a variety of mechanisms for specifying and
tracking object location and state.

=% Every object has its own kinex. The ones used here are simple
since our statue does not move (yet).

& Animation Controllers

=% Not used here. These are data structures that describe how the
object kinex changes over time.

4
% 02005
'

¥ i = = = . e - Ty
:-.‘r'._-';.-_r-r‘r.j"—f:'_'f -?;—J—"’ f'.'_Er,r-;—__-_-rf"-_f‘r_-_r-.r.r_—-r_ [Eesm i il fﬂf.;f;,c.r,'f. s :Iif:j =20V

-

@ Principia V3 Is not a static game engine:

*% There are many ways to organize and present the
content within a given rendering framework.

& The power of Principia:

= Rich variety of implementation methods and
rendering frameworks.

= Multitude of components, their properties and their
methods — optimized for production.

=% Flexibility in putting it all together with a minimum
mix of coding or standard scripting.

Q Demo_ 101F needs only scripts. There is no need
for user code. The GUI is the same common
Include covered In previous demos.

Textures and shaders

Lights3A

Camera3A

Output (content
presentation scheduled in
the order of control
update)

Material3A: Stream of
GPU state change
commands, shaders and
more.

A

Nested control structures that
make up the application and
user workflow

Geometry: VertexSet3A
stream of vertices in
local space and
property data.

Mesh3A: Collection of
frames containing
—Frame data
—Materials
—Geometris

?

World Viewer: A control for
displaying an entertainment
world experience.

:

*

Kinex: A
transformation matrix
with other state data
and control streams

Basic object
(Generic3A):
—Kinex locator
—Mesh
—Animation
controller

World: Contains
—Objects organized in
layers

—Structural data and
materials

More materials to
initialize or end layers.

<& Simple scene, one book, single page

& The page includes the two standard GUI pages
defined, and our most basic Viewer3A.

& The viewer refers to a world and to a camera
used to illuminate and render/visualize it.

##define (VIEWER_MAIN) as <WORLDVIEWER 3A>
#tag World = (WRLD_MAIN)
#tag Camera = (CAMERA MAIN)

##define (PG_MAIN) as <PAGE_2A>
#tag Anchor
#tag Region
#tag Element
#tag Element
#tag Element

=)

(

(-,
(VIEWER_MAIN , 0.
(PG_GUI_BASE , 0,
(PG_GUI_OVER , 0

#idefine (BK_MAIN) as <BOOK_2A>
#tag StartOpen = (1)
#tag StatelD = (MAIN , -, -, , o, 1)
#tag Element = (MAIN , -, -, , 0, PG_MAIN , 1)
##define (SCENE_MAIN) as <SCENE 2A>
#tag VarStop = (VS_TERM)
#tag Element = (-, BK_MAIN)

##run (SCENE_MAIN)

1 A GG =20 G -
5 SErEs (@) 20002005 -,

ke
&

& The simplest possible world class <WORLD_3A>
contains nothing but isolated objects.

& All world classes feature a multi-layer system for
managing the variety of objects they contain.

& Our world has the two objects shown — the
sculpture and the axis system, in a single layer.

##tde

ine (WRLD_MAIN) as <WORLD_3A>

f
#tag Layer_Decl (L_ITEMS , "“ITEMS"™ , M_RESET , M_RESET , 16)
#tag Layer_ltem = (L_ITEMS , O_AXISYS)
#tag Layer_ltem = (L_ITEMS , O_SCULPT)

Q- In addition, the world applies a GPU-resetting
material before and after rendering the objects
layer. This ensures controls render correctly.

—

-
-
@

e o PRI CIPI A S el C) 200 D-2005

s
\

D101F — Lights

& Our world has a single directional light with properties
as defined in the script below.

Q The <VsReg> tags place the relevant light properties in
the desired GPU constant registers, so that these are
accessible by the shader programs.

@ This light serves both fixed pipeline rendering (for the
axis) and shader rendering (for the sculpture)

##tdefine (LITE_MAIN) as <LIGHT_3A> "Can be used for both fixed and shader renders
#tag Type = LIGHT_DIREC "Directional light
#tag ColAmbi 55, 55, 5 “Ambient strength
#tag ColDiff 190, 190, "Diffuse strength
#tag ColSpec 200, 200, "Speclar strength
#tag Position 0.0, 0.0, R "Light position
-0.3, -1.0, . “Light direction
R “Not applicable, range
"Not applicable, falloff
“Not applicable, spot theta
“Not applicable, spot phi
“Not applicable, spot coeffs
"Shader register to place light incident dir
"Shader register to place light color, ambient
"Shader register to place light color, diffuse
“Shader register to place light color, specular.

#tag Direction
#tag Range

#tag Falloff
#tag Theta

#tag Phi

#tag Coeffs
#tag VsReg_Dir
#tag VsReg_Ambi
#tag VsReg_Diff
#tag VsReg_Spec

AAAAAAAAAAAAAAAAA

T ~
=n

el e = — e e N L N =
Y ESTER *zu"$3{; I & o) GG

I Ll S I -’?_"':—J NG=e21l) 4=r

& There are many ways to specify even a simple <CAMERA_3A>.
Here, its position, orientation and viewing parameters are simple
constants from the script.

& Our camera set-up has a single light that will be activated when
the camera itself is activated in the viewer.

& The camera sets the transpose composite view-projection matrix
INn vertex shader register #4, and its location in register #34. This
data is used by the sculpture shader program.

##define (CAMERA_MAIN) as <CAMERA 3A> "Can be used for both fixed and shader renders
#tag Target "Render on the back buffer
#tag Viewport “Use full extent of render target
#tag View.Perspec "Use simple isometric render
#tag View.EyePos "Scalar camera DEA position
#tag View.LookPos "Scalar camera look-at position
#tag View.Angle “Scalar camera angle
#tag View.UpVec "Scalar camera up-vector
#tag View.Aspect "Scalar camera aspect ratio
#tag View.ZNear "Scalar camera depth limit
#tag View.ZFar “Scalar camera depth limit
"Main light is on
"Shader register to place (VxP)" matrix
"Shader register to place cam location

1
=
o
=

A OOOCOOOCOO I M

o oa
o oul
o owu
°© oo
w B
Cz

gorkFrou
)

N
a1
N o/ o/ o/ o/ o/ N/ N/ N N NN

#tag Light
#tag VsReg_VPT
#tag VsReg_EPos

LITE_MAIN ,

w
i
~

(¢
(¢
(
¢
(¢
(¢
(
(
(¢
(¢
(
(¢

##define <SYS_VARIABLE>

CSHD_MSPEC , VARTYPE_FSR , 8.00, 8.00, 8.00, 8.00) "Specular power

VY T —— - A = WE=IE Rl -f|'r)28 G=g .;;;
[= - T — A = =N = e () ()
ESTER |- _.’ Al = == “I[¥ [I I

& Principia variables are used wherever data needs to be
encapsulated. Here, a variable contains the RGBA material

specular power, for use by the sculpture material.

##define <SYS_VARIABLE> = (CSHD_MSPEC , VARTYPE_FSR , 8.00, 8.00, 8.00, 8.00) "Specular power

& Confused as to what all this means? Read chapters 1-11,
1-03 and 1-04 for the basics on illumination, materials,
vertex streams, transforms, GPU states, shaders ...etc. You
do not need to be familiar with their programming, only

with the ideas behind the technology.

[T e (e e, [e
W ESTER :;J -f.

D101F — Sculpture Object

& Our sculpture has a single mesh. It has no animation. The
mesh has a single material and geometry. When presented,
the GPU applies the material and renders the geometry.

##tdefine (G_SCULPT) as <VERTEXSET_3A>
#tag File “Files_Media/Sculpture_F.3DS"
#tag Definer (VTD_DCL_FILE)

#tag Indexed (¢ YES)
#tag LoadNow (1)

##define (R_SCULPT) as <MESH_3A>
#tag Component = (o, M_SCULPT , G_SCULPT)

##define (KX_SCULPT) as <KINEX_S>
#tag Script = "Decl(M);Rotz(300.0);Mul(1.5,1.5,1.5);Mov(0.0,0.2,-0.5);Set(tM,0);""

##define (O_SCULPT) as <GENOBJECT 3A>
#tag Construct = (KX_SCULPT , R_SCULPT , NONE)

Its location-state is determined by the KX _SCULPT kinex. It
rotates, scales and translates the base geometry before
rendering, and places the transpose of this transform matrix
(model transform) into vertex shader register #0.

The vertex set geometry is read from a 3DS file, created using
3DSMax (itself imported from Daz3D). The DCL_FILE definer
tells Principia that we will render with shaders, and that the
vertex format will be configured based on the file data.

PIA S) 2000-2005
-

Materials look hairy — and they are.
This demo uses three materials: one to | ##define (TX COPPER) as <SURFACE>

#tag Definer = (DEF_TEX)

reset the GPU! one to render the aXiS #tag FI/IDeemo Com:non/Flles Media/Textures/Tex_Metal_BurnishedCopper_51

lines, and one to render the sculpture. #tag ForceUID = “SFT"

. . #tag LoadNow (1)
Materials may contain a sequence of
##define (M_SCULPT) as <MATERIAL_3A>
RS_LIGHTING , 0)
RS_FILLMODE , RA_SOLID)

GPU state change commands in ftag RS
preparation for rendering an itag RS

#tag RS

associated vertex stream, including #tag RS

#tag RS

texture specification, texture #tag RS

RS_CULLMODE , RA_CULLCCW)
RS_AMBIENTMATERIALSOURCE , RA_MATERIAL)
RS_DIFFUSEMATERIALSOURCE , RA_COLOR1)

RS_ZENABLE ,
RS_ZWRITEENABLE ,
RS_ALPHATESTENABLE ,
RS_ALPHABLENDENABLE
VS_BLINN)
PS_GOURAUD)

#tag RS

operation settings...etc. tag VShader
#tag PShader

The material definitions available in #Ea0 X ar a5 PR el 3

Principia V3 reflect the standard 8688 Turn off lighting, enable depth buffering, disable alpha blending,
DirectX9/0penGL GPU state engines, 5600 STot zero and sot the value of CSHD SPEC in Shader register #36.
which in turn mirror common
hardware standards

The material in addition tells which
shaders to use, and what additional
data to use to set shader constants.

Remember: once a material state is
set, it remains in force until changed
by another material!

AAAAAAAAAAAAA

@@@@ Note the texture uses a DEF_TEX definer, not a DEF_S2D.

r'l'p-.,r_j,—-r- r a-—fp- Jr_; -—-r--—fr ST

D101F — Shaders

e - ———————

9 3 _

Q Shaders are small snippets

##define (VS_BLINN) as <VSHADER_3A>
#tag File = "VS_BlinnHalf_shd"

of GPU machine code that ftag Shaderfon = VS BlIm™

#tag ShaderVs = (1.1)

d eSC ri be h OW to re n d e r th e ##define (PS_GOURAUD) as <PSHADER_3A>

#tag File = "PS_Gouraud.shd"

presented data stream. 29 Shaderren = T Couraut’

<& Principia shaders can be
written in assembly or in

#tag ShaderVs = (1.2)

high-level languages such
as HLSL (as here).

<& Principia can automatically
mange banks of shaders to
adapt to different
hardware levels.

e 002005
'

= Vlmnermmerg & e [Srrerie nrrerenne (b EENLOENENG . & e (=) 2
-] WY ESTiERA If _f‘_ B =TT “ | = j""y =N =

The vertex shader
Implements standard per-
vertex Blinn lighting.

It transforms vertex
positions and normals,
calculates diffuse and

specular terms, and
transfers texture
coordinates to the pixel
shader.

Chapter 1-04 covers
shader design with many
examples.

float4x4 mWrid . register i: world matrix
float4x4 mViewProj : register H VXP matrix
float3 vLDir . register light dir
float4 vLAmbi : register ambient color
float4 vLDiff . register diffuse color
float4 vLSpec : register spcular color
float3 VEPos : register H eye pos

float3 vMSpec : register : material power

float4 wPos

float3 wNorm
float3 wLite
float3 wView
float3 wHalf
float3 LdotN
float3 HdotN

: Position vector, world space

: Normal vector, world space

: Light incidence vector, world space
: View vector, world space

: Halfway vector, world space

: Scalar product

: Scalar product

struct VS_INPUT

{ /7 Inbound vertex buffer stream
float3 vPosition : POSITION
float3 vNormal - NORMAL
float2 vTexCoords : TEXCOORDO

struct VS_OUTPUT
{ 7/ Extant processed vertex stream

float4 vPosition : POSITION ;

float4 vDiffuse = COLORO H

float4 vSpecular : COLOR1 ;

float2 vTexCoord0 : TEXCOORDO; };
VS_OUTPUT VS_Blinn(const VS_INPUT In) { VS_OUTPUT Out = (VS_OUTPUT) 0;
/* Position world-view-projection transform and position output */
wPos = mul(float4(In.vPosition,1.0f), mWrid);
Out.vPosition = mul(wPos, mViewProj);

/* Normals world transform */
wNorm = mul(In.vNormal, (float3x3) mwWrid);
wNorm = normalize(wNorm);

/* Common light, view and half vectors in world space */

wLite = normalize(-vLDir); // Lite pos - Vertex pos
wView VEPos - wPos.xyz; // View pos - Vertex pos
wView normalize(wView) ;

wHal ¥ 0.5*(wLite+twView);

wHalf normalize(wHalf);

/* Lambert diffuse and ambient per-vertex color output */
LdotN = saturate(dot(wNorm, wLite));
Out.vDiffuse.rgb = vLDiff* LdotN +vLAmbi;

Out.vDiffuse.a = floatl(1.0);

/* Blinn specular per-vertex color output */
HdotN = saturate(dot(wNorm, wHalf));
Out.vSpecular.rgb = vLSpec*pow(HdotN, vMSpec);
Out.vSpecular.a = floatl1(1.0);

/* Texture coordinates */
Out.vTexCoord0.xy = In.vTexCoords.xy ;

/* Output stream to pixel shader */
return Out; }

D101F—-P

& The pixel shader
Implements standard
Gouraud lighting.

& It samples the texture,
multiplies by the diffuse
component and adds the
specular components.

& Note that all constants in
the shaders are pre-loaded
by the material applied,
and by the object kinex.

& Note that the material
disables the fixed function
lighting, and the geometry
uses a hon-FVF definer.

e
T

Ixel

- N
P

Shader

ot i N

sampler TexO ;5 // Api texture stageO

struct VS_OUTPUT
{ // Extant processed vertex stream
oat4 vPosition : POSITION ;
oat4 vDiffuse
oat4 vSpecular
oat2 vTexCoord0O

- COLORO H
: COLOR1 H
: TEXCOORDO; };

struct PS_OUTPUT

{ xtan ixel shader stream
a olor - COLORO N

PS_OUTPUT PS_Gouraud(VS_OUTPUT In)
{ ~ PS_OUTPUT Out = (PS_OUTPUT)O;

r generation */
or = tex2D(Tex0, In.vTexCoord0);
or *= In.vDiffuse;

or += In.vSpecular;

= Wimsrrmmeng O ~ [Err—rrs rere e [-
-3 LYESTIERY SyAlR IE Al &

=
i N

D101F — Axis Object

& The axis system is rendered _
USing the fixed function ##dzglgeRéM_CRLINE) as <MATERIAL_3AES_LIGHTING , o)

) . y I #tag RS
pipeline. This is done by ggg s
turning off the shaders, and ¥eg 12

#tag TX

using an FVF geometry. tag Venader

#tag PShader =

(

(RS_CULLMODE RA_CULLNONE)
(RS_FILLMODE , RA_WIREFRAME)
(RS_AMBIENTMATERTALSOURCE , RA_COLOR1)
(RS_DIFFUSEMATERIALSOURCE , RA_COLOR1)
(TS_COLOROP , TO_DISABLE
(TS_ALPHAOP TO_DISABLE ,
(-,0)
(
¢

NONE)
NONE)

We can use only the vertex or | ™4l o7 = “emeers

**__./Demo_Common/Files_Media/Calibration\Mesh_UnitAxisFrame.vsf"

pixel portion of the fixed frag Definer’ = (VID_FVEFILE)

pipeline by turning off only detine (LAXISYS) ag UESILI

the vertex or pixel shader. | L 00n e o
Our axis object does not need itag Comstruct = ("Decl(iv) RAXISYS . NONE)
lighting, and its GPU states
are correspondingly simple.
We use wireframe mode to
render only the lines.

Note that the kinex is defined
inline in the object. There is
no need to worry about
shader constants here.

T ~
=n

- o T o (. [
- A ESisl Yy SSudls IE

& There are four ways for
specifying 3D vertex
geometry in Principia:

-

-y

.
=5

& The geometry of the axis is
so simple that we can create
a VSF file by hand

& VSF files can be text or
binary. They can have
significant complexity, or be
as simple as here.

E,

Read from standard 3D file
formats such as 3DS.

Read from Principia formats
such as VSF and VSD.

Procedural generation
On the fly calculation

@@@ The content of the "Files_Media\Calibration\Mesh_UnitAxisFrame.vsf*
@@@ forms a mesh of three flattened triangles with vertices of different
@@@ color to represent each coordinate axis (x=red, y=grn, z=blu)

TEXT

VSF3

UNIT_SIZE_XYZ_AXIS_FRAME

@@ Vertex format specification
POS:3F, COLOR:COLOR

@@ Primitive type

4

@@ Indexed flag

0

@@ Reserved bootstrap section

0

@@ Total number of vertices and indices
9

0

@@ Number of frames

1

@@ Frame#0: Primitive first vertex index, primitive count, nb of vertices
0o 3 9

@@ Frame#0: Locus of first frame in index array and index count per frame
0 0

@@ Vertex data

0.000 0.000 0.000 FFFFO000
0.500 0.000 0.000 FFFFO000
1.000 0.000 0.000 FFFFO000
0.000 0.000 0.000 FFOOFFOO
0.000 0.500 0.000 FFOOFFOO
0.000 1.000 0.000 FFOOFFOO
0.000 0.000 0.000 FFOOO0OFF
0.000 0.000 0.500 FFOOOOFF
0.000 0.000 1.000 FFOOOOFF

—

Vi mmrs=me, '.:'-'—.f [::-E
W SIS BRI

—— [i =t =] | o] (e L) e T
el A A = o Srici= A SIS sy S Em s (=) e
- = e ' Wl R T,
= -t

Interfaces will be covered later. For now, if
we examine the graphic interface defined in
the common interfaces script, we will notice ##create (VISUAL_INTERFACE) as <VISUAL_INTERFACE>

three important tags for 3D rendering: btag Clear cotor ¢ oxrolo0r . vEs

= Fill the display buffer with solid color at #tag Clear_Depth. (1.0, YES)
#tag Clear_Stencil (o, NO)

the beginning of every frame. Since we
have no background ey e s not @@@ Alternatively we could have used a reference to the

doing this will lead to artifacts from @@@ standard solid black from the standard include library.

previous frames lingering on. 860 This color is defined as OxFF010101 and not 0x00000000,
@@@ to avoid confusion with transparency

Clear the depth buffer at every frame too
by filling it with ones. Since we are
rendering 3D scenes with depth testing,
this ensures that frame elements are
overlaid properly without interference
from the previous frame.

Many Principia tags require the
specification of color. There are four ways
for doing so:

=% As a 32bit ARGB hex number

=% As an R,G,B byte triplet. Such color is
always 10026 opaque

= As an R,G,B,A byte quad with A=0x00
being 10026 transparent

##define <COLOR_RGB> = (CL_BLACK , 1, 1, 1

=% As areference to a color object

Externally and internally, Principia typically
manages color as a standard 32-bit ARGB
word. Remember this!

e =) = | =) = —
IPIA SEris (6) 2000-2005

&

¢

¢
¢
¢

GX_Camera3A::AX_ Graphic

= Core Principia object used to describe the 3D viewing and projection
transformations in layman parameters

GX_Light3A::AX_ Graphic

= Core Principia light source object used to illuminate the scene as seen
through the camera

GX_Material3A::AX_Graphic
= Collection of GPU state commands and base material properties (some of
which may be sourced for lighting calculations depending on RS_*SOURCE)
GX_VSet3A::AX_Graphic
= Vertex stream primitive object. This is basically the discretized 3D geometry
of the sculpture. More on this in Chapter 3.

GX_Mesh3A::AX_Graphic
=» Collection of primitives and materials rendered together (here, the

assembly has one material and one geometry). The assembly of complex
objects will be covered in many subsequent chapters.

BX_Generic3A::AX_Object, WX_ World3A::AX_ World

= The sculpture as an object belonging to a world we can show. More in the
“Objects” and “Worlds” chapters

CX_View3A::CX_Control
= Basic 3D viewer control. More in the “Viewers” chapter

G S Emnms: () Zam e,
e S :("Jz g ,_, S

A
<
o

B y oy 5

- :.‘?'ﬁ‘-'.:-;' g np Wit - o o am - . -] Q@

D101F — Summary

e Mg L S —_—

& Rendered simple 3D objects within the GUI
previously created, using both shaders and the
fixed function pipeline.

& Introduced a basic framework and many ,
fundamental concepts for creating and
rendering the environments - or worlds — of our
entertainment applications

& This concludes Chapter 1 of the demo collection.
We can now start exploring the components
and capabilities offered by Principia, starting
with controls, and eventually progressing to

complete commercial-grade applications.

ey

-
|~

N (@

—

—

- e [e [PN [S s foml | N AN —
rrrerepe (B _pr N GNP S ERES :I':’_',J 2O a0 s

|
-
-

L R R R R R R R R R R g

Chapter 1 -

e

How to write, compile and run a basic Principia application
How to display an image on screen

How to assemble basic scenes, books and pages

How to create variables for holding information

How to interleave custom user code with Principia scripts
How to define and execute/display components

The basics of interfaces, channels and signals

Nesting controls to create display contents

How to create and interact with a basic cursor

How to implement basic transparency

How to use basic frames to create a GUI

How to use basic buttons

How to incorporate simple effects on the buttons
How to use a rotator to scroll thru display elements

=5 () 2000052005

PN =

-
-
@

e

Q How to create glyph fonts and print text

& How to access scripted components and Principia internal
variables from within user code

& How to obtain core diagnostic and performance data

& How to encapsulate functionality within standalone code
and script packets for use in other applications g

<& How to use the standard include library
<& How to add audio capabilities and play basic sounds 5

& How to use definers to select the right type and memory
location for media objects e.g. images and vertex sets

& How to work with basic color and alpha transparency
<& How to cast shadows and glows around images

) 200002005

7
(/e = o i :r';.—’_..-# (G)=7 :

-
-
@

& How to use shaders and/or the fixed-pipeline rendering
frameworks to render 3D objects

Q How to light and texture 3D objects using material

@ How to input geometry from one of the many 3D file
formats supported

<& How to send basic render state commands to the GPU
prior to rendering a vertex stream

& How to blend ambient and diffuse lighting properties to
create shadows and highlights in a simple lighting model

& How to render lines

& How to use kinexes to place objects at different points,
orientation and states in the 3D world

<& How to create a basic 3D world and a viewer thereof
integrated in the display control stream

T PRI G P S ERIES: "'I':’_-';_} 200200
-

-
o
@

Chapter 1 — The End

. W

-3 Q In summary, we covered quite a bunch of basic
| capabilities that come handy for any application !

<& We also start to see one incipient architectural framework
for building Principia applications:
= |n script, define components, workflow chunks and scenes

that make up the application, plus all the basic supporting
infrastructure such as interfaces.

=» |n user code, obtain references to the defined components
that the application will manipulate.

= |n user code, bind user procedures to components where
the application will manipulate contents.

= \Write the user procedures to implement the custom
application behavior of these components.

& With this, we are ready to go forth and explore all that
Principia has to offer !

	Chapter 1 - Basics
	D101A – Basic Startup
	D101A – Basic Startup
	D101A – Basic Concepts
	D101A – Dev Structure
	D101A - API Code
	D101A – Main Code
	D101A – Script, Interfaces
	D101A – Script, Frame
	D101A – Script, Cursor
	D101A – Script, Controls
	D101A – Script, Scene Setting
	D101A – Scripting Syntax (1)
	D101A – Scripting Syntax (2)
	D101A – Scripting Syntax (2)
	D101A – Summary
	D101B – Basic User GUI
	D101B – Main Code
	D101B – Script (1)
	D101B – Script (2)
	D101B – Script (3)
	D101B – Summary
	D101C – Basic Text Output
	D101C – Script (1)
	D101C – User Code (1)
	D101C – Script (2)
	D101C – Script (3)
	D101C – Script (4)
	D101C – Script (5)
	D101C – User Code (2)
	D101C – User Code (3)
	D101C – User Code (4)
	D101C – Summary
	D101D – Basic Audio
	D101D – Script (1)
	D101D – Script (2)
	D101D – Script (3)
	D101D – Script (4)
	D101D – Code
	D101D – Summary
	D101E - A Better Common GUI
	D101E - A Better Common GUI
	D101E - Common GUI Script (1)
	D101E - Common GUI Script (2)
	D101E - Common GUI Script (3)
	D101E - Common GUI Script (4)
	D101E - Common GUI Script (5)
	D101E - Common GUI Script (6)
	D101E - Common GUI Script (7)
	D101E - Common GUI Script (8)
	D101E - Common GUI Script (9)
	D101E - Common GUI Script (10)
	D101E - Common GUI Script (11)
	D101E - Common GUI Script (12)
	D101E - Common GUI Script
	D101E - Common GUI Script
	D101E - Common GUI Code (1)
	D101E - Common GUI Code (2)
	D101E - Common GUI Code (3)
	D101E – Using the Common GUI
	D101E – Demo Script (1)
	D101E – Demo Script (2)
	D101E – Demo Code (1)
	D101E – Demo Code (2)
	D101E – Demo Code (2)
	D101E – Surfaces and Textures
	D101E – Surfaces and Textures
	D101E – Surfaces and Textures
	D101E – Surfaces and Textures
	D101E – Surfaces and Textures
	D101E – Test Registration Patterns
	D101E – Surfaces and Textures
	D101E – Principia Timers
	D101E – Diagnostics (1)
	D101E – Diagnostics (2)
	D101E – Diagnostics (3)
	D101E – Diagnostics (4)
	D101E – Diagnostic Levels (1)
	D101E – Diagnostic Levels(2)
	NOTE – Update Docs
	D101E – Summary
	D101F – Basic Rendering
	D101F - Architecture Theory
	D101F - Architecture Theory
	D101F – New Concepts
	D101F – New Concepts
	D101F – New Concepts
	D101F – New Concepts
	D101F – New Concepts
	D101F – New Concepts
	D101F – New Concepts
	D101F – Implementation
	D101F – Implementation
	D101F – World Viewer & Scene
	D101F – World
	D101F – Lights
	D101F – Camera
	D101F – Helper Components
	D101F – Sculpture Object
	D101F – Sculpture Material
	D101F – Shaders
	D101F – Vertex Shader
	D101F – Pixel Shader
	D101F – Axis Object
	D101F – Axis Geometry
	D101F – Interfaces and Color
	D101F – Building Blocks Recap
	D101F – Summary
	Chapter 1 - Lessons
	Chapter 1 - Lessons
	Chapter 1 - Lessons
	Chapter 1 – The End

