

2

Chapter 3 – Basic RenderingChapter 3 – Basic Rendering

Rendering is the process whereof images Rendering is the process whereof images
are formed from graphic primitive data.are formed from graphic primitive data.

Principia provides many components to Principia provides many components to
hold graphic primitive data (such as hold graphic primitive data (such as
geometry or materials) and to manage geometry or materials) and to manage
its rendering (such as objects and world)its rendering (such as objects and world)

This chapter introduces the basic This chapter introduces the basic
rendering components and explains the rendering components and explains the
basic principles behind their use. basic principles behind their use.

3

Chapter 3 – Basic RenderingChapter 3 – Basic Rendering

PrePre--requisite knowledge:requisite knowledge:
Conceptual understanding of 3D renderingConceptual understanding of 3D rendering
Conceptual understanding of cameras and lightsConceptual understanding of cameras and lights
Conceptual understanding of graphic primitive dataConceptual understanding of graphic primitive data
Conceptual understanding of Conceptual understanding of GPUs GPUs and their statesand their states
No need for graphics programming backgroundNo need for graphics programming background

If you find Chapter 3 rather steep, or discover If you find Chapter 3 rather steep, or discover
that small but important details such as GPU that small but important details such as GPU
states or vertex formats are taken for granted:states or vertex formats are taken for granted:

Chapter 11 provides a broader discussion of basics Chapter 11 provides a broader discussion of basics
in its presentation of the fixed function pipelinein its presentation of the fixed function pipeline
Read the notes from an intro course on 3D graphics Read the notes from an intro course on 3D graphics
Read the Microsoft DirectX vs7/vs8/vs9 tutorialsRead the Microsoft DirectX vs7/vs8/vs9 tutorials

4

Chapter 3 – Basic RenderingChapter 3 – Basic Rendering

Central concepts in renderingCentral concepts in rendering
Rendering frameworkRendering framework

Graphic primitive data Graphic primitive data

Rendering sequenceRendering sequence

Principia utilizes the system GPU(s) to renderPrincipia utilizes the system GPU(s) to render
It relies on a software layer such as DirectX™ or It relies on a software layer such as DirectX™ or
OpenGL™ to issue commands to the GPU.OpenGL™ to issue commands to the GPU.

It encapsulates graphic primitive data into It encapsulates graphic primitive data into
components configured in script, thereby saving you components configured in script, thereby saving you
the hardship of managing graphics data.the hardship of managing graphics data.

It encapsulates rendering sequences in the script It encapsulates rendering sequences in the script
flow. This enables the creation of rich and complete flow. This enables the creation of rich and complete
visual artistry, without exposing the user to the visual artistry, without exposing the user to the
intricacies of graphics programming.intricacies of graphics programming.

5

Chapter 3 – FrameworksChapter 3 – Frameworks

Rendering framework: Rendering framework:
A structured way to organize and present different graphic A structured way to organize and present different graphic
data to construct the final image of an application object. data to construct the final image of an application object.

Principia features several rendering frameworks:Principia features several rendering frameworks:
The *2A* framework is based obsolete 2D The *2A* framework is based obsolete 2D blitblit renders. It is renders. It is
not deemed worthy of coverage here. not deemed worthy of coverage here.

The *3A* framework is the generalThe *3A* framework is the general--purpose Principia V3 purpose Principia V3
framework, designed for mass commercial production.framework, designed for mass commercial production.

The *4A* framework adds highThe *4A* framework adds high--order primitive modeling and order primitive modeling and
many powerful specialized rendering effects.many powerful specialized rendering effects.

Each framework has its own components, and Each framework has its own components, and
strikes a distinctive tradeoff between quality, strikes a distinctive tradeoff between quality,
performance, flexibility and complexity.performance, flexibility and complexity.

6

Chapter 3 – FrameworksChapter 3 – Frameworks

The Principia *3A* rendering frameworkThe Principia *3A* rendering framework
Each scene is processed on the CPU (server) and Each scene is processed on the CPU (server) and
converted into a sequence (queue) of graphic data converted into a sequence (queue) of graphic data
and operations to be executed by the GPU (client). and operations to be executed by the GPU (client).
This is referred to as “API processing”.This is referred to as “API processing”.
Once the sequence is closed, the GPU locks it and Once the sequence is closed, the GPU locks it and
processes the data and operations thereon, this processes the data and operations thereon, this
forming an image. This is “GPU processing”.forming an image. This is “GPU processing”.
The API and GPU steps can be run synchronously (at The API and GPU steps can be run synchronously (at
every frame, the CPU generates the queue, and then every frame, the CPU generates the queue, and then
the GPU executes it) or asynchronously.the GPU executes it) or asynchronously.
Geometry is represented as buffers of 3D polygon Geometry is represented as buffers of 3D polygon
primitives, primitives, rasterized rasterized by the client GPU(s).by the client GPU(s).
GPU processing of graphic data is controlled by (a) GPU processing of graphic data is controlled by (a)
shaders and/or (b) fixed function unit states. shaders and/or (b) fixed function unit states.

7

Chapter 3 – FrameworksChapter 3 – Frameworks

The Principia *3A* rendering frameworkThe Principia *3A* rendering framework
We recommend using programmable (shaderWe recommend using programmable (shader--based) based)
rendering for production. rendering for production.

Chapter 3 uses solely the *3A* framework, with a Chapter 3 uses solely the *3A* framework, with a
mix of programmable and fixed rendering. The legacy mix of programmable and fixed rendering. The legacy
fixed pipeline is covered in Chapter 11.fixed pipeline is covered in Chapter 11.

Pros and Cons of *3A*Pros and Cons of *3A*
VersatilityVersatility

Separate Separate ApiApi//Gpu Gpu sequences optimize performance sequences optimize performance
and leverage modern multiand leverage modern multi--processor hardware.processor hardware.

Limitation to triangleLimitation to triangle--based primitivesbased primitives

No support for cuttingNo support for cutting--edge rendering methods such edge rendering methods such
as rayas ray--tracing or simulations on the GPU.tracing or simulations on the GPU.

8

Chapter 3 – PrimitivesChapter 3 – Primitives

Graphic primitive major types:Graphic primitive major types:
Executable: components that are rendered to form Executable: components that are rendered to form
the image (e.g. vertex streams or the image (e.g. vertex streams or blittedblitted surfaces).surfaces).

State: components that provide context and State: components that provide context and
configuration to the GPU as it renders executable configuration to the GPU as it renders executable
primitives (e.g. materials and their numerous subprimitives (e.g. materials and their numerous sub--
components,components, kinexeskinexes, cameras, lights… etc.)., cameras, lights… etc.).

Operational: components that force the GPU or CPU Operational: components that force the GPU or CPU
to perform an operation on other primitives (e.g. to perform an operation on other primitives (e.g.
effects, layer operations… etc.).effects, layer operations… etc.).

Principia provides an unparalleled array of Principia provides an unparalleled array of
graphic primitives, encapsulated across several graphic primitives, encapsulated across several
families of components.families of components.

9

Chapter 3 – PrimitivesChapter 3 – Primitives

AX_AX_GraficGrafic components in the *3A* frameworkcomponents in the *3A* framework
GX_Color GX_Color –– contains color datacontains color data
GX_Font3A GX_Font3A –– contains font glyphs and datacontains font glyphs and data
GX_Light3A GX_Light3A –– contains lighting datacontains lighting data
GX_Camera3A GX_Camera3A –– contains view settingscontains view settings
GX_Surface GX_Surface –– contains image datacontains image data
GX_VShader3A GX_VShader3A –– contains vertex shaderscontains vertex shaders
GX_PShader3A GX_PShader3A –– contains pixel shaderscontains pixel shaders
GX_FShader3A GX_FShader3A –– contains effect shaderscontains effect shaders
GX_Material3A GX_Material3A –– contains material datacontains material data
GX_VSet3A GX_VSet3A –– contains vertex streams (geometry)contains vertex streams (geometry)
GX_Mesh3A GX_Mesh3A –– contains contains renderablerenderable assembliesassemblies

10

Chapter 3 – PrimitivesChapter 3 – Primitives

Other *3A* rendering components in Chapter 3Other *3A* rendering components in Chapter 3
KinexesKinexes
EffectsEffects

Kinexes Kinexes
Hold data on how primitives should be positionedHold data on how primitives should be positioned
Hold data on which Hold data on which keyframes keyframes to renderto render
Exposed at the AX_Object level Exposed at the AX_Object level

EffectsEffects
Operate on AX_Operate on AX_GraficGrafic* components* components
Executed on the GPU as part of scheduled materialExecuted on the GPU as part of scheduled material

There are many more components involved in There are many more components involved in
rendering that will be covered at later time.rendering that will be covered at later time.

11

Chapter 3 – SequencesChapter 3 – Sequences

Rendering sequences describe the order in Rendering sequences describe the order in
which primitives get scheduled for execution.which primitives get scheduled for execution.
The *3A* framework does not force rendering The *3A* framework does not force rendering
sequences, except for few simple rules:sequences, except for few simple rules:

Scenes (Chap.2) and few other specialized controls generate framScenes (Chap.2) and few other specialized controls generate frame e
loops and GPU instruction queues via the Principia interfaces.loops and GPU instruction queues via the Principia interfaces.
AX_Control components present and encapsulate AX_Control components present and encapsulate renderable renderable items items
(and/or other AX_Controls) within a scene.(and/or other AX_Controls) within a scene.
AX_World components encapsulate 3D AX_World components encapsulate 3D renderable renderable objects in objects in
streams ordered in sequential layers.streams ordered in sequential layers.
Materials, effects… can be inserted at any point of the renderinMaterials, effects… can be inserted at any point of the rendering g
sequence because many components have material sockets. sequence because many components have material sockets.
The rendering sequence is thus driven by the organization of The rendering sequence is thus driven by the organization of
controls in the script and by the population of world layers. controls in the script and by the population of world layers.
Advanced developers can overAdvanced developers can over--ride and/or complement the ride and/or complement the
rendering sequence from within the user code via API calls.rendering sequence from within the user code via API calls.

12

Chapter 3 – SequencesChapter 3 – Sequences

Rendering sequences are paramountRendering sequences are paramount
Determine what you will seeDetermine what you will see

Determine performanceDetermine performance

Determine experience Determine experience

Highest level concepts recapHighest level concepts recap
Rendering frameworkRendering framework

Graphic primitives (rendering components)Graphic primitives (rendering components)

Rendering sequenceRendering sequence

Chapter 3 introduces the very basics of the Chapter 3 introduces the very basics of the
rendering process using Principia components. rendering process using Principia components.
It also describes some key elements that you It also describes some key elements that you
need to master to achieve good results.need to master to achieve good results.

13

Chapter 3 – RoadmapChapter 3 – Roadmap

Rendering is a vast and complex topic!Rendering is a vast and complex topic!

Chapter 3 begins with the basics of how to Chapter 3 begins with the basics of how to
render objects that are relatively plain and render objects that are relatively plain and
simple. The focus is on the basic “how?”.simple. The focus is on the basic “how?”.

Chapter 4 describes how to design shaders and Chapter 4 describes how to design shaders and
manage data to achieve the results you want.manage data to achieve the results you want.

Chapter 5 describes the basic methods for Chapter 5 describes the basic methods for
making your images come to life.making your images come to life.

Chapters 7 and 8 describe the highChapters 7 and 8 describe the high--level data level data
structures that make graphics come alive as structures that make graphics come alive as
worlds, characters, objects and more.worlds, characters, objects and more.

And that is only the beginning…And that is only the beginning…

14

Chapter 3 – RoadmapChapter 3 – Roadmap

Demo_103A Demo_103A -- Unified Rendering GUIUnified Rendering GUI
Demo_103BDemo_103B -- GeometryGeometry
Demo_103C Demo_103C -- MaterialsMaterials
Demo_103D Demo_103D -- Cameras and Lights Cameras and Lights
Demo_103E Demo_103E -- Using ShadersUsing Shaders
Demo_103F Demo_103F -- Frame BuffersFrame Buffers
Demo_103G Demo_103G -- DepthDepth--Stencils BuffersStencils Buffers
Demo_103H Demo_103H -- Render TargetsRender Targets
Demo_103I Demo_103I -- TexturesTextures
Demo_103J Demo_103J -- Texture Coordinates Texture Coordinates
Demo_103K Demo_103K -- AntiAnti--AliasingAliasing
Demo_103L Demo_103L -- GPU Fixed Stages UseGPU Fixed Stages Use

16

The new common include-3D-control-panel
sets key camera parameters so that the
user can examine the object in all manners
using simple controls. It also turns on/off
lighting and sets light(s) parameters.

17

D103A – Unified GUID103A – Unified GUI

Before jumping into rendering itself, let’s Before jumping into rendering itself, let’s
extend the common GUI from Chapter 1extend the common GUI from Chapter 1

Enable interactive control of cameraEnable interactive control of camera

Enable interactive setting of up to three lights and of their Enable interactive setting of up to three lights and of their
illumination modeillumination mode

Enable this control panel to work with both shaders and Enable this control panel to work with both shaders and
the fixed function pipelinethe fixed function pipeline

Encapsulate into includable script(s)Encapsulate into includable script(s)

This would provide a good example of This would provide a good example of
more complex integration between more complex integration between
control and rendering components. control and rendering components.

18

D103A – Unified GUID103A – Unified GUI

File encapsulationFile encapsulation
Module_NAV_3D.Module_NAV_3D.cfgcfg//cppcpp: Data variables and control : Data variables and control
components for the 3D control panel itself components for the 3D control panel itself

Module_SHD_3D.Module_SHD_3D.cfgcfg//cppcpp: Data variables and materials : Data variables and materials
for connecting 3DCP panel data to shader registers for connecting 3DCP panel data to shader registers

Script defines 3D control panel componentsScript defines 3D control panel components

User code manages the data and control statesUser code manages the data and control states

Albeit the complexity of these modules is much Albeit the complexity of these modules is much
bigger than anything done so far, 3DCP is created bigger than anything done so far, 3DCP is created
using the concepts from Chapters 1/2.using the concepts from Chapters 1/2.

Unfamiliar with the lighting and camera data Unfamiliar with the lighting and camera data
structures? Read D103D and Chapter 11.structures? Read D103D and Chapter 11.

19

D103A – Unified GUID103A – Unified GUI

Our demo need only to include the 3DCP modules, Our demo need only to include the 3DCP modules,
define materials and geometry, and render !define materials and geometry, and render !

##parse "../Demo_Common/Files_Scripts/Module_GUIDEM.cfg"
##parse "../Demo_Common/Files_Scripts/Module_NAV_3D.cfg"
##parse "../Demo_Common/Files_Scripts/Module_SHD_3D.cfg"

##define (S_EX01) as <SURFACE>
#tag Definer = (DEF_TEX)
#tag File = "../Demo_Common/Files_Media/Textures/Tex_Metal_BurnishedCopper_512.bmp"

##define (M_EX01) as <MATERIAL_3A>
#tag RS = (RS_FILLMODE , RA_SOLID)
. . .
#tag RS = (RS_ALPHABLENDENABLE , 0)
#tag TS = (TS_COLOROP , TO_MODULATE , 0)
#tag TS = (TS_COLORARG1 , TA_TEXTURE , 0)
#tag TS = (TS_COLORARG2 , TA_DIFFUSE , 0)
#tag TS = (TS_ALPHAOP , TO_MODULATE , 0)
#tag TS = (TS_ALPHAARG1 , TA_TEXTURE , 0)
#tag TS = (TS_ALPHAARG2 , TA_DIFFUSE , 0)
#tag VShader = (NONE)
#tag PShader = (NONE)
#tag TX = (S_EX01 , 0)

##define (G_EX01) as <VERTEXSET_3A>
#tag File = "../Demo_Common/Files_Media/Meshes/Mesh_Sculpture_FemaleA.3ds"
#tag Definer = (VTD_FVF_FILE)
#tag Indexed = (YES)

##define (R_EX01) as <MESH_3A>
#tag Component = (0 , M_EX01 , G_EX01)

##define (O_EX01) as <GENOBJECT_3A>
#tag Construct = ("Decl(M);RotZ(300.0);Mul(1.5,1.5,1.5);Mov(0.0,0.2,-0.5);" , R_EX01 , NONE)

##define (WRLD_EX01) as <WORLD_3A>
#tag Layer_Decl = (L_ITEMS , "ITEMS" , - , - , 16)
#tag Layer_Item = (L_ITEMS , O_EX01)
#tag Layer_Item = (L_ITEMS , O_AXISYS)

##define (VIEW_EX01) as <WORLDVIEWER_3A>
#tag World = (WRLD_EX01)
#tag Camera = (CAMERA_ST3D)

20

D103A – Unified GUID103A – Unified GUI

Likewise, the user code needs only to include the Likewise, the user code needs only to include the
3DCP modules and make sure they are called in 3DCP modules and make sure they are called in
the scene init/main user procedures.the scene init/main user procedures.

There is no need for code to render! But what is There is no need for code to render! But what is
behind the scenes? It is worth your while to take behind the scenes? It is worth your while to take
a look how data and controls are integrated…a look how data and controls are integrated…

#define CONF_FILE "Demo_103A_Main.cfg"
#define ROOT_NAME "..//Product_040701_Demos//Demo_1.03.A_UnifiedGUI//"
#include "../Demo_Common/Files_Code/Module_GUIDEM.cpp"
#include "../Demo_Common/Files_Code/Module_NAV_3D.cpp"
#include "../Demo_Common/Files_Code/Module_SHD_3D.cpp"

void User_Scene_Init (void* VArg)
BGN_ACTOR_CODE{

/* Execute initialization for the common display components */
Common_PerformanceDisplay_Init(VArg);
Common_ControlPannel3D_Init(VArg);
Common_ShaderConnect3D_Init(VArg);

END_ACTOR_CODE}

void User_Scene_Main (void* VArg)
BGN_ACTOR_CODE{

/* Execute scene loop operations for the common display components */
Common_PerformanceDisplay_Main(VArg);
Common_ControlPannel3D_Main(VArg);
Common_ShaderConnect3D_Main(VArg);

END_ACTOR_CODE}

21

D103A – Unified GUID103A – Unified GUI

NAV3D script architecture. It pays off to organize content NAV3D script architecture. It pays off to organize content
when building complex functional units:when building complex functional units:

Variables holding lighting parameters and choicesVariables holding lighting parameters and choices
Predefined lights (the parameters are overPredefined lights (the parameters are over--ridden in user code by ridden in user code by
connecting to variables above)connecting to variables above)
Predefined default material (parameters overPredefined default material (parameters over--ridden in user code by ridden in user code by
connecting to variables above)connecting to variables above)
Standard 2D/3D cameras and their keyboard controllers Standard 2D/3D cameras and their keyboard controllers
Fonts, panel surfaces and component framesFonts, panel surfaces and component frames
Pages for the View/Light1/Light2/Light3/Material tabs. Preceded Pages for the View/Light1/Light2/Light3/Material tabs. Preceded by its by its
ingredients as follows (a) buttons (b) sliders (c) input boxes (ingredients as follows (a) buttons (b) sliders (c) input boxes (d) checklists.d) checklists.
Control panel book. The book definition is preceded by that of iControl panel book. The book definition is preceded by that of its switching ts switching
buttons and a subbuttons and a sub--page to keep them together.page to keep them together.
Standard axis objectStandard axis object
Standard GPU reset Standard GPU reset renderable renderable object object

Only select highlights from the script will be listed next. Only select highlights from the script will be listed next.
The full script is just multiple instances of these themes.The full script is just multiple instances of these themes.

22

D103A – Unified GUID103A – Unified GUI

NAV3D implementation: Joint sliderNAV3D implementation: Joint slider--input box. Note box input box. Note box
focus and VARMOD methods.focus and VARMOD methods.

##define (BT_NVW1) as <BUTTON_2C>
#tag State = (NORMAL , F_NAV3D_S , NONE , NONE , -)
#method = (ON_OVER , CH_CRS , X_OVER , NORMAL , F_NAV3D_S , NONE , - , -)
#method = (ON_LHLD , CH_NAV , X_NMV1 , NORMAL , F_NAV3D_S , NONE , - , -)
#method = (ON_LHLD , CH_NAV , X_IVM1 , NORMAL , F_NAV3D_S , NONE , - , -)
#tag Region . . .

##define (SLD_NVW1) as <SLIDERBOX_2A>
#tag Anchor = (- , -)
#tag Region = (32 , 282 , 141 , 292)
#tag VarMin = (VA_DIST)
#tag VarVal = (VV_DIST)
#tag VarMax = (VB_DIST)
#tag Delta = (0.1)
#tag CoDecBtn = (NONE , - , -)
#tag CoMovBtn = (BT_NVW1 , -11 , -10)
#tag CoIncBtn = (NONE , - , -)
#tag CoIndctr = (NONE , - , -)
#method = (ON_OVER , CH_CRS , X_OVER)
#method = (ON_LCLK , CH_NAV , X_NSV1)
#method = (ON_LCLK , CH_NAV , X_IVM1)
#method = (EXE_SETV , CH_NAV , X_NSV1)
#method = (EXE_MOVE , CH_NAV , X_NMV1)

##define (INB_NVW1) as <INPUTBOX_2A>
#tag Variable = (VV_DIST)
#tag TextBox = (150 , 280 , 185 , 295)
#tag TextIns = (155 , 287)
#tag MaxLen = (32)
#tag PlateOn = (NULL , - , -)
#tag PlateOff = (NULL , - , -)
#tag FontOn = (FN_SMLTXT_R)
#tag FontOff = (FN_SMLTXT_B)
#tag VarFmt = "%.1f"
#tag OverRead = (NO)
#tag Jumpout = (YES)
#tag Dynamic = (NO)
#method = (ON_OVER , CH_CRS , X_HIDE)
#method = (ON_LCLK , CH_NAV , X_IVU1)
#method = (EXE_UPDATE , CH_NAV , X_IVU1)
#method = (ON_LCLK , CH_NAV , X_IVF1)
#method = (EXE_FOCUS , CH_NAV , X_IVF1)
#method = (EXE_VARMOD , CH_NAV , X_IVM1)

23

D103A – Unified GUID103A – Unified GUI

NAV3D implementation: Clickable selectors with preNAV3D implementation: Clickable selectors with pre--built built
images. States are monitored in user code.images. States are monitored in user code.

##define (BTN_LITE) as <BUTTON_2C>
#tag State = (CHEKED , F_NAV3D_E , NONE , NONE , -)
#tag State = (UNCHEK , F_NAV3D_N , NONE , NONE , -)
#method = (ON_OVER , CH_CRS , X_OVER , UNCHEK , F_NAV3D_N , NONE , -)
#method = (ON_LCLK , CH_NAV , X_CHEK , UNCHEK , F_NAV3D_N , A_BEEP_01 , -)
#method = (ON_OVER , CH_CRS , X_OVER , CHEKED , F_NAV3D_E , NONE , -)
#method = (ON_LCLK , CH_NAV , X_UNCH , CHEKED , F_NAV3D_E , A_BEEP_01 , -)
#method = (EXE_STATE , CH_NAV , X_CHEK , CHEKED)
#method = (EXE_STATE , CH_NAV , X_UNCH , UNCHEK)

##define (BTN_SPEC) as <BUTTON_2C>
#tag State = (UNCHEK , F_NAV3D_N , NONE , NONE , -)
#tag State = (CHEKED , F_NAV3D_E , NONE , NONE , -)
#method = (ON_OVER , CH_CRS , X_OVER , UNCHEK , F_NAV3D_N , NONE , -)
#method = (ON_LCLK , CH_NAV , X_SHEK , UNCHEK , F_NAV3D_N , A_BEEP_01 , -)
#method = (ON_OVER , CH_CRS , X_OVER , CHEKED , F_NAV3D_E , NONE , -)
#method = (ON_LCLK , CH_NAV , X_SNCH , CHEKED , F_NAV3D_E , A_BEEP_01 , -)
#method = (EXE_STATE , CH_NAV , X_SHEK , CHEKED)
#method = (EXE_STATE , CH_NAV , X_SNCH , UNCHEK)

##define (CKL_NVW1) as <CHECKLIST_2A>
#tag MaxSelect = (1)
#tag LayoutX = (0 , 0)
#tag LayoutY = (0 , 20)
#tag Plate = (NONE , - , -)
#method = (ON_OVER , CH_CRS , X_OVER)
#method = (ON_LCLK , CH_CRS , X_OVER)
#tag Item = (SEL1 , 0)
#tag Media = (F_NAV3D_N , 0 , 0 , F_NAV3D_Y , NONE, NONE)
#tag Text = ("" , 0 , 0 , "" , NONE, NONE)
#tag Item = (SEL2 , 1)
#tag Media = (F_NAV3D_N , 0 , 0 , F_NAV3D_Y , NONE, NONE)
#tag Text = ("" , 0 , 0 , "" , NONE, NONE)

24

D103A – Unified GUID103A – Unified GUI

NAV3D implementation: The multiple standalone NAV3D implementation: The multiple standalone
checkboxes require simpler pointer focus methods. Thus, checkboxes require simpler pointer focus methods. Thus,
the images are prethe images are pre--built on the page and blank regions are built on the page and blank regions are
used to drive interaction.used to drive interaction.

##define (INB_L1AG) as <INPUTBOX_2A>
#tag Variable = (VL_L1AG)
#tag TextBox = (0 , 0 , 35 , 18)
#tag TextIns = (5 , 9)
#tag MaxLen = (32)
#tag PlateOn = (NULL , - , -)
#tag PlateOff = (NULL , - , -)
#tag FontOn = (FN_SMLTXT_R)
#tag FontOff = (FN_SMLTXT_B)
#tag VarFmt = "%4d"
#tag OverRead = (YES)
#tag Jumpout = (NO)
#tag Dynamic = (NO)
#method = (ON_OVER , CH_CRS , X_HIDE)
#method = (ON_LCLK , CH_NAV , X_IL1V)
#method = (EXE_UPDATE , CH_NAV , X_IL1V)

. . .

##define (PG_NAV3D_L1) as <PAGE_2A>
#tag Anchor = (- , -)
#tag Region = (- , - , - , -)
#tag Element = (F_NAV3D_F1 , - , - , -)
#tag Element = (CKL_NL1T , - , - , -)
#tag Element = (CKL_NL1S , - , - , -)
#tag Element = (INB_L1AR , 78 , 263 , -)
#tag Element = (INB_L1AG , 118 , 263 , -)
#tag Element = (INB_L1AB , 156 , 263 , -)

25

D103A – Unified GUID103A – Unified GUI

NAV3D implementation: Light source components. The NAV3D implementation: Light source components. The
defined parameters are overwritten in the user code.defined parameters are overwritten in the user code.

Note that lights, camera and material color components are Note that lights, camera and material color components are
only used when rendering on the fixed function pipeline. only used when rendering on the fixed function pipeline.
When using shaders, key properties of these components When using shaders, key properties of these components
are copied to registerare copied to register--mapped variables (see Chapter 4).mapped variables (see Chapter 4).

##define (LITE_STD1) as <LIGHT_3A>
#tag Type = (LIGHT_DIRECT)
#tag ColAmbi = (1, 1, 1)
#tag ColDiff = (1, 1, 1)
#tag ColSpec = (0, 0, 0)
#tag Position = (0.0, 0.0, 0.0)
#tag Direction = (0.0, 0.0, 0.0)
#tag Range = (999.9)
#tag Falloff = (1.0)
#tag Theta = (25.0)
#tag Phi = (45.0)
#tag Coeffs = (1.0, 0.0, 0.0, 0.0)

. . .

##define (LITE_STD3) as <LIGHT_3A>
#tag Type = (LIGHT_SPOT)
#tag ColAmbi = (1, 1, 1)
#tag ColDiff = (1, 1, 1)
#tag ColSpec = (0, 0, 0)
#tag Position = (0.0, 0.0, 0.0)
#tag Direction = (0.0, 0.0, 0.0)
#tag Range = (999.9)
#tag Falloff = (1.0)
#tag Theta = (25.0)
#tag Phi = (45.0)
#tag Coeffs = (1.0, 0.0, 0.0, 0.0)

26

D103A – Unified GUID103A – Unified GUI

NAV3D implementation: Default material, resetting the GPU NAV3D implementation: Default material, resetting the GPU
to a desired neutral state. Some of these parameters are to a desired neutral state. Some of these parameters are
reset in the user code based on the control panel state.reset in the user code based on the control panel state.

##define (M_STDNULL) as <MATERIAL_3A>
#tag RS = (RS_ZENABLE , 1)
#tag RS = (RS_ZWRITEENABLE , 1)
#tag RS = (RS_STENCILENABLE , 0)
#tag RS = (RS_DEPTHBIAS , 0.0000)
#tag RS = (RS_FILLMODE , RA_SOLID)
#tag RS = (RS_CULLMODE , RA_CULLCCW)
#tag RS = (RS_POINTSPRITEENABLE , 0)
#tag RS = (RS_POINTSCALEENABLE , 0)
#tag RS = (RS_VERTEXBLEND , BL_DISABLE)
#tag RS = (RS_NORMALIZENORMALS , 1) ‘ DO NOT FORGET THIS ONE, OR ALL YOUR FFPL RENDERS WILL BOMB!!!
#tag RS = (RS_LOCALVIEWER , 1)
#tag TS = (TS_COLOROP , TO_MODULATE , 0)
#tag TS = (TS_COLORARG1 , TA_TEXTURE , 0)
#tag TS = (TS_COLORARG2 , TA_DIFFUSE , 0)
. . .
#tag TS = (TS_ALPHAARG2 , TA_CURRENT , 1)
#tag RS = (RS_AMBIENTMATERIALSOURCE , RA_MATERIAL)
#tag RS = (RS_DIFFUSEMATERIALSOURCE , RA_COLOR1)
#tag RS = (RS_SPECULARMATERIALSOURCE , RA_COLOR2)
#tag RS = (RS_EMISSIVEMATERIALSOURCE , RA_MATERIAL)
#tag FVFAmb = (255, 255, 255 , 255)
. . .
#tag FVFPwr = (1.00)
#tag RS = (RS_ALPHATESTENABLE , 0)
#tag RS = (RS_ALPHAREF , 0)
#tag RS = (RS_ALPHAFUNC , CA_GREATER)
#tag RS = (RS_ALPHABLENDENABLE , 1)
#tag RS = (RS_SRCBLEND , FA_SRCALPHA)
#tag RS = (RS_DESTBLEND , FA_INVSRCALPHA)
#tag SA = (SS_ADDRESSU , SA_WRAP , 0)
#tag SA = (SS_ADDRESSV , SA_WRAP , 0)
#tag SA = (SS_MAGFILTER , SA_NONE , 0)
. . .
#tag TS = (TS_TEXCOORDINDEX , 0 , 0)
. . .
#tag TX = (NONE , 0)
. . .
#tag PShader = (NONE)
#tag VShader = (NONE)
#tag FShader = (NONE)
#tag Phase = (0)

27

D103A – Unified GUID103A – Unified GUI

NAV3D implementation: Standard GX_Camera3A linked to NAV3D implementation: Standard GX_Camera3A linked to
control variables (set via the control panel) and a signaling control variables (set via the control panel) and a signaling
keyboard controller that activates camera motion methods.keyboard controller that activates camera motion methods.

##define (KJAY_CAMS3D)as <KJAY_2A>
#method = (ON_KEYPRS , CH_NAV , X_PANU , AUP)
#method = (ON_KEYPRS , CH_NAV , X_PAND , ADN)
#method = (ON_KEYPRS , CH_NAV , X_PANL , ALF)
#method = (ON_KEYPRS , CH_NAV , X_PANR , ARG)

##define (CAMERA_ST3D)as <CAMERA_3A>
#tag Target = (NONE) ' Render on the back buffer
#tag Viewport = (- , - , - , -) ' Use full extent of render target
#tag ViewVar.Perspec = (VV_PERS)
#tag ViewVar.Dist = (VV_DIST)
#tag ViewVar.Elev = (VV_ELEV)
#tag ViewVar.Azim = (VV_AZIM)
#tag ViewVar.Angle = (VV_ANGL)
#tag ViewVar.LookPos = (VV_LATX , VV_LATY , VV_LATZ)
#tag View.UpVec = (0.0 , 0.0 , 1.0)
#tag View.Aspect = (1.0)
#tag View.ZNear = (0.0)
#tag View.ZFar = (255.0)
#tag XfProj = (NONE)
. . .
#tag MaterialBgn = (M_STDNULL)
#tag MaterialEnd = (-)
#tag VsReg_View = (49)
#tag Light = (LITE_STD1 , 1)
#tag Light = (LITE_STD2 , 0)
#tag Light = (LITE_STD3 , 0)

#tag UserCtl_PanW = (200)
#tag UserCtl_PanH = (150)
. . .

#method = (EXE_PANU , CH_NAV , X_PANU)
#method = (EXE_PAND , CH_NAV , X_PAND)
#method = (EXE_PANL , CH_NAV , X_PANL)
#method = (EXE_PANR , CH_NAV , X_PANR)
. . .

28

D103A – Unified GUID103A – Unified GUI

A simple 2D direct camera is provided for rendering flat A simple 2D direct camera is provided for rendering flat
images using transformed pixelimages using transformed pixel--sized geometries.sized geometries.

Some objects tags can take variables instead of values. Some objects tags can take variables instead of values.
If the variable changes, the object is automatically updated If the variable changes, the object is automatically updated
without need of any user code. This is how we move the without need of any user code. This is how we move the
camera here…camera here…

. . .
#method = (EXE_PANU , CH_NAV , X_PANU)
#method = (EXE_PAND , CH_NAV , X_PAND)
#method = (EXE_PANL , CH_NAV , X_PANL)
#method = (EXE_PANR , CH_NAV , X_PANR)
#method = (EXE_DISTN , CH_NAV , X_DISTN)
#method = (EXE_DISTF , CH_NAV , X_DISTF)
#method = (EXE_ZOOMN , CH_NAV , X_ZOOMN)
#method = (EXE_ZOOMF , CH_NAV , X_ZOOMF)
#method = (EXE_ELEVU , CH_NAV , X_ELEVU)
#method = (EXE_ELEVD , CH_NAV , X_ELEVD)
#method = (EXE_AZIML , CH_NAV , X_AZIML)
#method = (EXE_AZIMR , CH_NAV , X_AZIMR)
#method = (ON_PANS , CH_NAV , X_ULKX)
#method = (ON_PANS , CH_NAV , X_ULKY)
#method = (ON_PANS , CH_NAV , X_ULKZ)
#method = (ON_DIST , CH_NAV , X_IVM1)
#method = (ON_ZOOM , CH_NAV , X_IVM4)
#method = (ON_ELEV , CH_NAV , X_IVM2)
#method = (ON_AZIM , CH_NAV , X_IVM3)

##define (CAMERA_ST2D) as <CAMERA_3A>
#tag Viewport = (- , - , - , -)
#tag ViewSim2D = (1)
#tag MaterialBgn = (M_STDNULL)
#tag MaterialEnd = (-)
#tag VsReg_View = (49)

29

D103A – Unified GUID103A – Unified GUI

NAV3D implementation: Much artwork is produced by third NAV3D implementation: Much artwork is produced by third
party art pipeline tools, and loaded from a standard 3D party art pipeline tools, and loaded from a standard 3D
format such as 3DS (more on this in the next demo).format such as 3DS (more on this in the next demo).

Two Principia 3DS loaders are provided with typical flag Two Principia 3DS loaders are provided with typical flag
settings: the first welds all fragments in the 3DS file into settings: the first welds all fragments in the 3DS file into
single vertex streams without embedded materials, the single vertex streams without embedded materials, the
second leaves the fragment material and SMG detail at the second leaves the fragment material and SMG detail at the
cost of having a structurecost of having a structure--rich vertex stream.rich vertex stream.

##define (STDMAXLDR_FUSED) as <PROCDAT_IMPORT3DS>
#tag Transform = "Decl(M); Mul(1.00, 1.00, 1.00);"
#tag Ldo_MeshFacetize = (NO)
#tag Ldo_MeshUseSmg = (NO)
#tag Ldo_MeshUseMtl = (NO)
#tag Ldo_FragNormals = (NO , NO)
#tag Ldo_FragMeshWeld = (WELD_POSUV , 0.0)
#tag Asm_XSmg = (YES , WELD_POSUV , 0.0)
#tag Asm_XMat = (YES , WELD_POSUV , 0.0)
#tag Asm_XObj = (NO , WELD_NONE , 0.0)
#tag Asm_Normals = (NO , YES)
#tag Vgn_StripMtl = (YES)

##define (STDMAXLDR_FRAGS) as <PROCDAT_IMPORT3DS>
#tag Transform = "Decl(M); Mul(1.00, 1.00, 1.00);"
#tag Ldo_MeshFacetize = (NO)
#tag Ldo_MeshUseSmg = (YES)
#tag Ldo_MeshUseMtl = (YES)
#tag Ldo_FragNormals = (NO , YES)
#tag Ldo_FragMeshWeld = (WELD_POSUV , 0.0)
#tag Asm_XSmg = (YES , WELD_POSUV , 0.0)
#tag Asm_XMat = (NO , WELD_POSUV , 0.0)
#tag Asm_XObj = (NO , WELD_NONE , 0.0)
#tag Asm_Normals = (NO , NO)
#tag Vgn_StripMtl = (NO)

30

D103A – Unified GUID103A – Unified GUI

NAV3D user code: This is how we connect data references NAV3D user code: This is how we connect data references
to components defined in script. Knowing the API data to components defined in script. Knowing the API data
structure, we can access the data via these references …structure, we can access the data via these references …

/* PageAA: obtain pointers to the Principia objects defined in the script */
aMAT = (GX_Material3A*) Principia->GetReferenceTo("M_STDNULL");
aCAM = (GX_Camera3A*) Principia->GetReferenceTo("CAMERA_ST3D");

/* PageVV: obtain pointers to the Principia objects defined in the script */
aBtnLITE = (CX_Button2C*) Principia->GetReferenceTo("BTN_LITE");
aBtnSPEC = (CX_Button2C*) Principia->GetReferenceTo("BTN_SPEC");
aCklPERS = (CX_CheckList2A*) Principia->GetReferenceTo("CKL_NVW1");
aVarPERS = (SX_Variable*) Principia->GetReferenceTo("VV_PERS");

/* PageL1: obtain pointers to the Principia objects defined in the script */
aL1 = (GX_Light3A*) Principia->GetReferenceTo("LITE_STD1");
aCklNL1S = (CX_CheckList2A*) Principia->GetReferenceTo("CKL_NL1S");
aCklNL1T = (CX_CheckList2A*) Principia->GetReferenceTo("CKL_NL1T");
aVarL1AR = (SX_Variable*) Principia->GetReferenceTo("VL_L1AR");
aVarL1AG = (SX_Variable*) Principia->GetReferenceTo("VL_L1AG");

31

D103A – Unified GUID103A – Unified GUI

NAV3D user code main: This is how we test single button NAV3D user code main: This is how we test single button
states, checklist states and connect them to variable states, checklist states and connect them to variable
changes or render state modifications. changes or render state modifications.

/* View control: light enabler */
SelN = Principia->GetNamedValue("CHEKED");
Test = aBtnLITE->TestState(SelN, SelIDX);
if (Test) then{

aMAT->SetRS(D3DRS_LIGHTING , 1);
}else{

aMAT->SetRS(D3DRS_LIGHTING , 0);
endif}
Test = aBtnSPEC->TestState(SelN, SelIDX);
if (Test) then{

aMAT->SetRS(D3DRS_SPECULARENABLE , 1);
}else{

aMAT->SetRS(D3DRS_SPECULARENABLE , 0);
endif}

/* View control: perspective selection */
Test = aCklPERS->TestSelection(Sel1, SelIDX);
if (Test) then{

aVarPERS->Assign(1);
aMAT->SetRS(D3DRS_LOCALVIEWER , 1);

}else{
aVarPERS->Assign(0);
aMAT->SetRS(D3DRS_LOCALVIEWER , 1);

endif}

32

D103A – Unified GUID103A – Unified GUI

NAV3D user code main: This is how we set a list of light NAV3D user code main: This is how we set a list of light
object parameters. The light object will update itself when object parameters. The light object will update itself when
the camera that references it will be applied. the camera that references it will be applied.

/* View control: Light1 parameters */
aVarL1AR->Get(aL1->ColorAmbi->cR);
aVarL1AG->Get(aL1->ColorAmbi->cG);
aVarL1AB->Get(aL1->ColorAmbi->cB);
aVarL1DR->Get(aL1->ColorDiff->cR);
aVarL1DG->Get(aL1->ColorDiff->cG);
aVarL1DB->Get(aL1->ColorDiff->cB);
aVarL1SR->Get(aL1->ColorSpec->cR);
aVarL1SG->Get(aL1->ColorSpec->cG);
aVarL1SB->Get(aL1->ColorSpec->cB);
aVarL1PX->Get(aL1->PosX);
aVarL1PY->Get(aL1->PosY);
aVarL1PZ->Get(aL1->PosZ);
aVarL1DX->Get(aL1->DirX);
aVarL1DY->Get(aL1->DirY);
aVarL1DZ->Get(aL1->DirZ);
aVarL1C1->Get(aL1->AttC0);
aVarL1C2->Get(aL1->AttC1);
aVarL1C3->Get(aL1->AttC2);
aVarL1RR->Get(aL1->Range);
aVarL1FF->Get(aL1->Falloff);
aVarL1TH->Get(aL1->Theta);
aVarL1FI->Get(aL1->Phi);

33

D103A – Unified GUID103A – Unified GUI

NAV3D User code main. This is how we set the type of light NAV3D User code main. This is how we set the type of light
and determine which camera lights are on or off. and determine which camera lights are on or off.

We are going to skip the rest of the light and material We are going to skip the rest of the light and material
property updates, because they really apply for fixed property updates, because they really apply for fixed
function pipeline renders anyway. We just want to show the function pipeline renders anyway. We just want to show the
techniques for user code component management.techniques for user code component management.

/* View control: Light3 modality */
Test = aCklNL3T->TestSelection(Sel1, SelIDX);
if (Test) aL3->Type = LIGHTTYPE_DIRECT;
Test = aCklNL3T->TestSelection(Sel2, SelIDX);
if (Test) aL3->Type = LIGHTTYPE_POINT;
Test = aCklNL3T->TestSelection(Sel3, SelIDX);
if (Test) aL3->Type = LIGHTTYPE_SPOT;
Test = aCklNL3T->TestSelection(Sel4, SelIDX);
if (Test) aL3->Type = LIGHTTYPE_GLOBAL;

/* View control: Light3 activity */
Test = aCklNL3S->TestSelection(Sel1, SelIDX);
if (Test) aCAM->LightsOn->ePtr[2] = 1;
Test = aCklNL3S->TestSelection(Sel2, SelIDX);
if (Test) aCAM->LightsOn->ePtr[2] = 0;

34

D103A – Unified GUID103A – Unified GUI

Useful note: When compiled in diagnostic mode, Principia Useful note: When compiled in diagnostic mode, Principia
generates a running log of issues and events in the core generates a running log of issues and events in the core
dump file as it runs scenes and parses scripts.dump file as it runs scenes and parses scripts.

Parsing file: [Demo_103A_Main.cfg]
Parsing file: [../Demo_Common/Files_Scripts/Module_GUIDEM.cfg]
Parsing file: [..\..\Principia_Library\Principia_StandardDefinitions_Core_v300.cfg]
Parsing file: [..\..\Principia_Library\Principia_StandardDefinitions_Utility_v300.cfg]
Parsing file: [..\..\Principia_Library\Principia_StandardDefinitions_Procedures_v300.cfg]
Parsing file: [../Demo_Common/Files_Scripts/Module_INTERFACES.cfg]
Unrecognized tag: DRMAgent
Unrecognized tag: RepeatRate
Unrecognized tag: HoldMoves
Tag similarity: Device_HW, Device_HWRASTERIZER
Tag similarity: Device_HW, Device_HWTNL
Tag similarity: Device_DP2, Device_DP2EX
Tag similarity: DevDcl_UBYTE4, DevDcl_UBYTE4N
Tag similarity: VtxProcCaps_TEXGEN, VtxProcCaps_TEXGENSPHERE
Tag similarity: Ztest_NE, Ztest_NEVER
Tag similarity: Stencil_INCR, Stencil_INCRSAT
Tag similarity: Stencil_DECR, Stencil_DECRSAT
. . .
Tag similarity: TexOp_MODULATE, TexOp_MODULATE2X
Tag similarity: TexOp_MODULATE, TexOp_MODULATE4X
Tag similarity: TexAdress_MIRROR, TexAdress_MIRRORONCE
Tag similarity: VolAdress_MIRROR, VolAdress_MIRRORONCE
Parsing file: [../Demo_Common/Files_Scripts/Module_NAV_3D.cfg]
MT: Set: Expand: (32)
Tag similarity: CoInd, CoIndctr
Unrecognized tag: CoIndctr
Parsing file: [../Demo_Common/Files_Scripts/Module_SHD_3D.cfg]

3DSFILE: Fna(../Demo_Common/Files_Media/Meshes/Mesh_Sculpture_FemaleA.3ds)
CH:0x4D4D: Ver(3)
CH:0x3D3E: Len(10)
CH:0x100: Len(10)

CH:0x4000: Obj(default)
CH:0x4100: Len(1363758)
MT: Set: Expand: (96021)

35

D103A – Unified GUID103A – Unified GUI

SHD3D implementation. The script which enables SHD3D implementation. The script which enables
to connect control panel data to shader registers to connect control panel data to shader registers
begins by defining the transfer variables.begins by defining the transfer variables.

##define <SYS_VARIABLE> = (CSHDR_LPOS_A , VARTYPE_FSR , 0.00, 0.00, 0.00, 0.00) 'Principal light position
##define <SYS_VARIABLE> = (CSHDR_LDIR_A , VARTYPE_FSR , 0.00, 0.00, 0.00, 0.00) 'Principal light direction
##define <SYS_VARIABLE> = (CSHDR_AMBI_A , VARTYPE_FSR , 0.00, 0.00, 0.00, 0.00) 'Principal light ambient
##define <SYS_VARIABLE> = (CSHDR_DIFF_A , VARTYPE_FSR , 0.00, 0.00, 0.00, 0.00) 'Principal light diffuse
##define <SYS_VARIABLE> = (CSHDR_SPEC_A , VARTYPE_FSR , 0.00, 0.00, 0.00, 0.00) 'Principal light specular
##define <SYS_VARIABLE> = (CSHDR_LPAR_A , VARTYPE_FSR , 0.00, 0.00, 0.00, 0.00) 'Principal light parameters
##define <SYS_VARIABLE> = (CSHDR_LPOS_B , VARTYPE_FSR , 0.00, 0.00, 0.00, 0.00) 'Secondary light position
##define <SYS_VARIABLE> = (CSHDR_LDIR_B , VARTYPE_FSR , 0.00, 0.00, 0.00, 0.00) 'Secondary light direction
##define <SYS_VARIABLE> = (CSHDR_AMBI_B , VARTYPE_FSR , 0.00, 0.00, 0.00, 0.00) 'Secondary light ambient
##define <SYS_VARIABLE> = (CSHDR_DIFF_B , VARTYPE_FSR , 0.00, 0.00, 0.00, 0.00) 'Secondary light diffuse
##define <SYS_VARIABLE> = (CSHDR_SPEC_B , VARTYPE_FSR , 0.00, 0.00, 0.00, 0.00) 'Secondary light specular
##define <SYS_VARIABLE> = (CSHDR_LPAR_B , VARTYPE_FSR , 0.00, 0.00, 0.00, 0.00) 'Secondary light parameters
##define <SYS_VARIABLE> = (CSHDR_AMBI_M , VARTYPE_FSR , 0.00, 0.00, 0.00, 0.00) 'General purpose, material ambient
##define <SYS_VARIABLE> = (CSHDR_DIFF_M , VARTYPE_FSR , 0.00, 0.00, 0.00, 0.00) 'General purpose, material diffuse
##define <SYS_VARIABLE> = (CSHDR_SPEC_M , VARTYPE_FSR , 0.00, 0.00, 0.00, 0.00) 'General purpose, material specular
##define <SYS_VARIABLE> = (CSHDR_EMIT_M , VARTYPE_FSR , 0.00, 0.00, 0.00, 0.00) 'General purpose, material emissive
##define <SYS_VARIABLE> = (CSHDR_PARS_M , VARTYPE_FSR , 0.00, 0.00, 0.00, 0.00) 'General purpose, material power
##define <SYS_VARIABLE> = (CSHDR_EPOS , VARTYPE_FSR , 0.00, 0.00, 0.00, 0.00) 'Camera position
##define <SYS_VARIABLE> = (CSHDR_EDIR , VARTYPE_FSR , 0.00, 0.00, 0.00, 0.00) 'Camera direction
##define <SYS_VARIABLE> = (CSHDR_EPAR , VARTYPE_FSR , 0.00, 0.00, 0.00, 0.00) 'Camera parameters
##define <SYS_VARIABLE> = (CSHDR_TIME , VARTYPE_FSR , 0.00, 0.00, 0.00, 0.00) 'Camera parameters

36

D103A – Unified GUID103A – Unified GUI

SHD3D script also provides two key materials:SHD3D script also provides two key materials:
StdCamlitStdCamlit: to be used in vertex shaders. Maps camera, light : to be used in vertex shaders. Maps camera, light
and other nonand other non--local data to various vertex shader registers.local data to various vertex shader registers.
StdPerPixelStdPerPixel: to be used for per: to be used for per--pixel lighting. Maps primary pixel lighting. Maps primary
light ARGB properties to pixel shader registers 1,2 and 3.light ARGB properties to pixel shader registers 1,2 and 3.
These included materials enable us to unburden the demo These included materials enable us to unburden the demo
scripts and to use a consistent shader data structure.scripts and to use a consistent shader data structure.

##define (MSHD_STDCAMLIT) as <MATERIAL_3A>
#tag VsMat = (4 , MAT_VPT) 'World-to-projection space transform in shader register 4
#tag VsMat = (12 , MAT_VT) 'World-to-camera space transform in shader register 12
#tag VsMat = (16 , MAT_PT) 'Projection transform in shader register 16
#tag VsVar = (30 , CSHDR_LPOS_A) 'Light A position
#tag VsVar = (31 , CSHDR_LDIR_A) 'Light A direction
#tag VsVar = (32 , CSHDR_LPAR_A) 'Light A parameter
#tag VsVar = (33 , CSHDR_AMBI_A) 'Light A ambient color
#tag VsVar = (34 , CSHDR_DIFF_A) 'Light A diffuse color
#tag VsVar = (35 , CSHDR_SPEC_A) 'Light A specular color
#tag VsVar = (36 , CSHDR_LPOS_B) 'Light B position
. . .
#tag VsVar = (41 , CSHDR_SPEC_B) 'Light B specular color
#tag VsVar = (42 , CSHDR_AMBI_M) 'Substrate material ambient
. . .
#tag VsVar = (46 , CSHDR_PARS_M) 'Substrate material power
#tag VsVar = (47 , CSHDR_EPOS) 'Important geometry: camera position
#tag VsVar = (48 , CSHDR_EDIR) 'Important geometry: camera direction
(…register 49 reserved for camera viewport size, set by standard camera …)
#tag VsVar = (50 , CSHDR_TIME) 'Application world time

##define (MSHD_STDPERPIXEL) as <MATERIAL_3A>
#tag PsVar = (1 , CSHDR_AMBI_A)
#tag PsVar = (2 , CSHDR_DIFF_A)
#tag PsVar = (3 , CSHDR_SPEC_A)

37

D103A – Unified GUID103A – Unified GUI

SHD3D script also provides readySHD3D script also provides ready--toto--use shaders for some use shaders for some
classic, standard illumination models:classic, standard illumination models:

Standard Standard LambertianLambertian specular reflection vertex shaderspecular reflection vertex shader
Standard Standard Blinn Blinn halfhalf--vector specular reflection vertex shadervector specular reflection vertex shader
Microsoft view space halfMicrosoft view space half--vector specular vertex shadervector specular vertex shader
Standard Standard Gouraud Gouraud pixel shaderpixel shader

##define (VS_STD_LREFL) as <VSHADER_3A>
#tag File = "../Demo_Common/Files_Media/Shaders/Shader_Std_LambertRefl.vsh"
#tag ShaderFcn = "VS_Std_Lrefl"
#tag ShaderAsm = (NO)
#tag ShaderVs = (1.1)

##define (VS_STD_BHALF) as <VSHADER_3A>
#tag File = "../Demo_Common/Files_Media/Shaders/Shader_Std_BlinnHalf.vsh"
#tag ShaderFcn = "VS_Std_Bhalf"
#tag ShaderAsm = (NO)
#tag ShaderVs = (1.1)

##define (VS_STD_MHALF) as <VSHADER_3A>
#tag File = "../Demo_Common/Files_Media/Shaders/Shader_Std_MsoftHalf.vsh"
#tag ShaderFcn = "VS_Std_Mhalf"
#tag ShaderAsm = (NO)
#tag ShaderVs = (1.1)

##define (PS_STD_GOURAUD) as <PSHADER_3A>
#tag File = "../Demo_Common/Files_Media/Shaders/Shader_Std_Gouraud.psh"
#tag ShaderFcn = "PS_Std_Gouraud"
#tag ShaderAsm = (NO)
#tag ShaderVs = (1.2)

38

D103A – Unified GUID103A – Unified GUI

Finally, SHD3D provides a programmable Finally, SHD3D provides a programmable kinex kinex (Chapter 4) (Chapter 4)
and animation controller to rotate displayed objects around and animation controller to rotate displayed objects around
the zthe z--axis, with stop/start controlled by the UNV* buttons.axis, with stop/start controlled by the UNV* buttons.

##define (KX_AUTOROT) as <KINEX_I>
#tag QLerpM = (YES)
#tag FrameK = (0 , "Decl(M);RotZ(0.00);")
#tag FrameK = (1 , "Decl(M);RotZ(90.0);")
#tag FrameK = (2 , "Decl(M);RotZ(180.);")
#tag FrameK = (3 , "Decl(M);RotZ(270.);")
#tag VsMat = (0 , MAT_WT)
#tag VsMat = (8 , MAT_WVT)

##define (AN_AUTOROT) as <ANIMATOR_F>
#tag Type = (ANIM_SEQSTATE)
#tag Clock = (CLOCK_PMS)
#tag AState = (RN , 0)
#tag AState = (RPA , 0)
#tag AState = (RPB , 1)
#tag AState = (RPC , 2)
#tag AState = (RPD , 3)
#tag AState = (RMA , 0)
#tag AState = (RMB , 3)
#tag AState = (RMC , 2)
#tag AState = (RMD , 1)
#tag TransTMP = (RPA , RPB , 4000)
#tag TransTMP = (RPB , RPC , 4000)
#tag TransTMP = (RPC , RPD , 4000)
#tag TransTMP = (RPD , RPA , 4000)
#tag TransTMP = (RMA , RMB , 4000)
#tag TransTMP = (RMB , RMC , 4000)
#tag TransTMP = (RMC , RMD , 4000)
#tag TransTMP = (RMD , RMA , 4000)
#tag TransSIG = (RN , RPA , CH_NAV , X_UNVA)
#tag TransSIG = (RN , RMA , CH_NAV , X_UNVB)
#tag InterSIG = (RN , 2000 , CH_NAV , X_UNVC)

39

D103A – Unified GUID103A – Unified GUI

The SHD3D user code simply copies the control panel state The SHD3D user code simply copies the control panel state
variables into the float4 variables mapped to registers.variables into the float4 variables mapped to registers.

It is that simple! However, if you write your own shaders to It is that simple! However, if you write your own shaders to
use with the rendering GUI, make sure your constant use with the rendering GUI, make sure your constant
register indexes do not conflict with those used by the GUI.register indexes do not conflict with those used by the GUI.

void Common_ShaderConnect3D_Init (void* VArg)
BGN_ACTOR_CODE{

/* Obtain pointers to the Principia objects defined in the script */
Cs_LposA = (SX_Variable*) Principia->GetReferenceTo("CSHDR_LPOS_A");
Cs_LdirA = (SX_Variable*) Principia->GetReferenceTo("CSHDR_LDIR_A");
. . .

END_ACTOR_CODE}

void Common_ShaderConnect3D_Main (void* VArg)
BGN_ACTOR_CODE{

/* Principal light: Copy panel control data to shader register variables. */
. . .
Cs_LparA->SetF->ePtr[0] = aL1->AttC0 ;
Cs_LparA->SetF->ePtr[1] = aL1->AttC1 ;
Cs_LparA->SetF->ePtr[2] = aL1->AttC2 ;
Cs_LparA->SetF->ePtr[3] = aL1->Range ;
. . .

41

D103B – GeometryD103B – Geometry

Most rendering is based on rasterizing Most rendering is based on rasterizing
3D geometry primitives onto image 3D geometry primitives onto image
buffers. Primitives are typically discrete buffers. Primitives are typically discrete
approximations of object surfaces. approximations of object surfaces.

The workhorse primitives for today’s The workhorse primitives for today’s
graphics are 3D triangle collections, graphics are 3D triangle collections,
commonly structured in vertex buffers.commonly structured in vertex buffers.

Chapter 3 focuses on basic management Chapter 3 focuses on basic management
of 3D vertex buffers. Note that other of 3D vertex buffers. Note that other
frameworks and geometry types exist, frameworks and geometry types exist,
and are supported by Principia.and are supported by Principia.

42

D103B – GeometryD103B – Geometry

Basic Principia geometry components in Basic Principia geometry components in
the *3A* rendering framework:the *3A* rendering framework:

Vertex buffers (GX_VSet3A)Vertex buffers (GX_VSet3A)

Kinexes Kinexes (many types, but for now, we are interested only in (many types, but for now, we are interested only in
the model matrix M of their AX_the model matrix M of their AX_Kinex Kinex generic archetype)generic archetype)

Model vs. World Space:Model vs. World Space:
Vertex geometry data is typically specified in a coordinate Vertex geometry data is typically specified in a coordinate
system local to the discretized surface (model space)system local to the discretized surface (model space)

Typically, this geometry needs to be transformed in the Typically, this geometry needs to be transformed in the
application world space by multiplication with the application world space by multiplication with the
AX_AX_KinexKinex::M model (or world) transform matrix.::M model (or world) transform matrix.

Kinexes Kinexes hold the model matrices applied when rendering hold the model matrices applied when rendering
vertex streams, and thus they define where in the 3D world vertex streams, and thus they define where in the 3D world
will a vertex primitive be positioned and rendered.will a vertex primitive be positioned and rendered.

43

D103B – GeometryD103B – Geometry

Spaces and transforms:Spaces and transforms:
Space: a coordinate system used to describe geometry data. Many Space: a coordinate system used to describe geometry data. Many
“spaces” are used for rendering besides model and world spaces.“spaces” are used for rendering besides model and world spaces.
Transform: an operation transforming coordinates from one space Transform: an operation transforming coordinates from one space
to another. Executed via a CPU or GPU to another. Executed via a CPU or GPU MxV MxV instruction.instruction.

Other commonly used spaces:Other commonly used spaces:
View or camera space: Transform uses V matrix and outputs vertexView or camera space: Transform uses V matrix and outputs vertex
position in viewposition in view frustrumfrustrum (extent is bound by camera settings).(extent is bound by camera settings).
Clip space: Transform usesClip space: Transform uses VxPVxP matrix andmatrix and ouputsouputs vertex position vertex position
in the [in the [--1,1]1,1]xyxy+[0,1]z cube representing the projected view +[0,1]z cube representing the projected view
frustrumfrustrum..
Tangent space. Local system based upon the surface curvature.Tangent space. Local system based upon the surface curvature.
Light space: Coordinate system aligned with light source.Light space: Coordinate system aligned with light source.
UVW space: Coordinate system aligned with texture UV sets. UVW space: Coordinate system aligned with texture UV sets.
Environment map space: Generic term for a transform from world Environment map space: Generic term for a transform from world
space via some environment matrix, to create a coordinate systemspace via some environment matrix, to create a coordinate system
for sampling an environment map, such as a reflection mapfor sampling an environment map, such as a reflection map

44

D103B – GeometryD103B – Geometry

Some common spaces and transforms:Some common spaces and transforms:

45

D103B – GeometryD103B – Geometry

Transforms in DirectXTransforms in DirectX

For efficiency reasons, Direct X executes For efficiency reasons, Direct X executes
the the MxV MxV multiply asmultiply as

[row vector] = [row vector] x [matrix][row vector] = [row vector] x [matrix]

46

D103B – GeometryD103B – Geometry

From world to screen …From world to screen …

Camera space transformCamera space transform
Translation and rotationTranslation and rotation

No scalingNo scaling

Clip space transform (DX)Clip space transform (DX)
Scaling of view Scaling of view frustrumfrustrum

X,Y to [X,Y to [--1,1], Z to [0,1]1,1], Z to [0,1]

Vertex shader outputVertex shader output

ViewportViewport scale & centerscale & center
X,Y to screenX,Y to screen

Z to depthZ to depth

47

D103B – Geometry DataD103B – Geometry Data

GX_VSet3A ! You will see it a lot:GX_VSet3A ! You will see it a lot:
Workhorse vertex data primitive component in the Principia Workhorse vertex data primitive component in the Principia
3A rendering framework. It encapsulates vertex buffers, *3A* rendering framework. It encapsulates vertex buffers,
many capabilities, and much else besides.many capabilities, and much else besides.

GX_VSet3A structure:GX_VSet3A structure:
Vertex data bufferVertex data buffer

Optional index data buffer for indexed primitivesOptional index data buffer for indexed primitives

Definer (Principia DX_VtxDef3 component)Definer (Principia DX_VtxDef3 component)

Topology type and keyframe boundaries dataTopology type and keyframe boundaries data

Optional embedded materialOptional embedded material

Optional embedded extra GX_VSet3A includesOptional embedded extra GX_VSet3A includes

Optional embedded geometry phase GX_VSet3A includesOptional embedded geometry phase GX_VSet3A includes

Geometry bounding box, sphere…etc. in model spaceGeometry bounding box, sphere…etc. in model space

48

D103B – Geometry DataD103B – Geometry Data

GX_VSet3A capabilities GX_VSet3A capabilities
Balance between flexibility and overheadBalance between flexibility and overhead
Load from multiple file formatsLoad from multiple file formats
Save into 3DS and native VSF file formatsSave into 3DS and native VSF file formats
Usable with shaders and/or the fixed function pipelineUsable with shaders and/or the fixed function pipeline
Hierarchical flexibility: embeds materials and other GX_VSet3A Hierarchical flexibility: embeds materials and other GX_VSet3A
internally, while serves as component in internally, while serves as component in renderable renderable meshes.meshes.
Configuration flexibility: all aspects of format, topology, usagConfiguration flexibility: all aspects of format, topology, usage e
options, structure …etc. are managed from script.options, structure …etc. are managed from script.
User choice of indexed or nonUser choice of indexed or non--indexed topologyindexed topology
Stream definition and usage driven by simple script languageStream definition and usage driven by simple script language
Wide variety of effects, topologic operations and transformationWide variety of effects, topologic operations and transformationss
Native animation support featuring discreteNative animation support featuring discrete keyframeskeyframes
Multiple access pathways to vertex and index dataMultiple access pathways to vertex and index data
Alternate vertex data selection based on Alternate vertex data selection based on LoD LoD controllerscontrollers

49

D103B – Geometry DataD103B – Geometry Data

Vertex data buffers:Vertex data buffers:
Series of identical vertices that are rendered in one pass by Series of identical vertices that are rendered in one pass by
the GPU, subject to current materialthe GPU, subject to current material--kinexkinex--camera states.camera states.
Vertex format: provided in the definer, describes the type of Vertex format: provided in the definer, describes the type of
data each vertex contains (e.g. position, data each vertex contains (e.g. position, normals normals …etc).…etc).
Geometry type: defines how vertices are topologically Geometry type: defines how vertices are topologically
connected to form triangles outlining the shape rendered. connected to form triangles outlining the shape rendered.
Vertex data elements are treated as separate but Vertex data elements are treated as separate but
interleaved binary streams by the GPU. interleaved binary streams by the GPU.

Vertex data geometry types for GX_VSet3AVertex data geometry types for GX_VSet3A
Point listPoint list
Line listLine list
Line stripLine strip
Triangle listTriangle list
Triangle stripTriangle strip
Triangle fanTriangle fan

50

D103B – Geometry DataD103B – Geometry Data

Vertex buffer data topology conventions. NonVertex buffer data topology conventions. Non--indexed indexed
buffer vertices are rendered in the sequence they appear.buffer vertices are rendered in the sequence they appear.

Simple triangle fan topologySimple triangle fan topology Simple triangle strip topologySimple triangle strip topology

Principia/DX9 front face convention for single trianglePrincipia/DX9 front face convention for single triangle

51

Index buffersIndex buffers
Without index buffers, the vertex buffer needs to Without index buffers, the vertex buffer needs to
encode the triangle topology (by listing the vertices encode the triangle topology (by listing the vertices
in the right order) in addition to storing vertex data. in the right order) in addition to storing vertex data.
This requires the redundant storage of vertices.This requires the redundant storage of vertices.

Index buffers store the indexes of vertices from the Index buffers store the indexes of vertices from the
vertex buffer in the order they form triangles. The vertex buffer in the order they form triangles. The
vertices do not need to be stored redundantly. vertices do not need to be stored redundantly.

Indexed buffer formatsIndexed buffer formats
IsIndexedIsIndexed flag and index buffer format declared in flag and index buffer format declared in
the DX_VtxDef3() definer.the DX_VtxDef3() definer.

Format is either 16 or 32 bit. Some older or mobile Format is either 16 or 32 bit. Some older or mobile
graphic cards do not support 32graphic cards do not support 32--bit format, which bit format, which
restricts the count of vertices to less than 65,355.restricts the count of vertices to less than 65,355.

D103B – Geometry DataD103B – Geometry Data

52

D103B – Geometry DataD103B – Geometry Data

ZeroZero--based indexingbased indexing

Vertex list: P0..P8Vertex list: P0..P8

Index for triangle set topology is Index for triangle set topology is
(0,1,3), (1,4,3), (1,2,4), (2,5,4), (0,1,3), (1,4,3), (1,2,4), (2,5,4),
(3,4,6), (4,7,6), (4,5,7), (5,8,7)… (3,4,6), (4,7,6), (4,5,7), (5,8,7)…
(n,n+1,n+2),(n+1,n+3,n+2) (n,n+1,n+2),(n+1,n+3,n+2)

P0P0 P1P1 P2P2

P3P3 P4P4 P5P5

P6P6 P7P7 P8P8

Indexed vertex set data organization (example)Indexed vertex set data organization (example)

A nonA non--indexed vertex set would have to specify indexed vertex set would have to specify
all listed vertices above in the vertex buffer all listed vertices above in the vertex buffer
instead of just the indices. Contrast this to an instead of just the indices. Contrast this to an
indexed strip (bandwidth reduced by 3x!)indexed strip (bandwidth reduced by 3x!)

53

D103B – Geometry DataD103B – Geometry Data

Much of the geometry used in production Much of the geometry used in production
applications is based on indexed buffers:applications is based on indexed buffers:

Since a vertex typically takes far less space than a Since a vertex typically takes far less space than a
16/3216/32--bit index, considerable GPU memory savings bit index, considerable GPU memory savings
are achieved relative to nonare achieved relative to non--indexed buffers.indexed buffers.

Rendering and loading bandwidth is improved.Rendering and loading bandwidth is improved.

Easier loading and manipulation in many cases.Easier loading and manipulation in many cases.

Index buffers have some limitations too:Index buffers have some limitations too:
Objects with sharp edges, where the same vertex Objects with sharp edges, where the same vertex
may have multiple may have multiple normalsnormals, are harder to manage., are harder to manage.

Some effects which rely on face disjunctions, such as Some effects which rely on face disjunctions, such as
shattering…etc, require vertex redundancy.shattering…etc, require vertex redundancy.

54

D103B – Geometry DataD103B – Geometry Data

Principia makes the management of indexed Principia makes the management of indexed
and nonand non--indexed vertex data transparent and indexed vertex data transparent and
easy for the user:easy for the user:

The The VSetVSet* family of Principia components holds the * family of Principia components holds the
vertex data as either indexed or not, and tracks the vertex data as either indexed or not, and tracks the
topology automatically. topology automatically.

VSetVSet* 3DS loaders and most procedural geometry * 3DS loaders and most procedural geometry
generators enable the user to choose between generators enable the user to choose between
indexed topology or not by means of a simple flag.indexed topology or not by means of a simple flag.

VSetVSet* definers enable separate driver properties for * definers enable separate driver properties for
index and vertex data. Principia provides DMA index and vertex data. Principia provides DMA
methods for accessing index as well as vertex data. methods for accessing index as well as vertex data.

Unless designing custom effects or geometries, Unless designing custom effects or geometries,
Principia users do not need to delve into Principia users do not need to delve into
indexing details. Just set the “indexed” flag!indexing details. Just set the “indexed” flag!

55

D103B – Geometry DataD103B – Geometry Data

Where does vertex data come from ?Where does vertex data come from ?
Loaded from file in the native Principia VSF3 format. Loaded from file in the native Principia VSF3 format.
Such files usually hold a binary image of the definer Such files usually hold a binary image of the definer
and data buffers, and load the fastest.and data buffers, and load the fastest.
Loaded from file in external formats supported by Loaded from file in external formats supported by
Principia (e.g. 3DS or OBJ). Note that complex Principia (e.g. 3DS or OBJ). Note that complex
objects will load, but their data structure will be objects will load, but their data structure will be
hard to manage and may degrade performance.hard to manage and may degrade performance.
Created from one of the many Principia procedures Created from one of the many Principia procedures
that generate or modify geometry data.that generate or modify geometry data.
Created in the user code by taking the data from Created in the user code by taking the data from
internal Principia components such as SX_internal Principia components such as SX_MeshUTLMeshUTL..
Created in the user code totally from scratch.Created in the user code totally from scratch.

Because VSF3 files do not force mesh and Because VSF3 files do not force mesh and
material structures on geometry, they are very material structures on geometry, they are very
suitable for highsuitable for high--performance productions.performance productions.

56

D103B – Geometry DataD103B – Geometry Data

The essential DX_VtxDef3() definer:The essential DX_VtxDef3() definer:
Principia associates each vertex stream with a DX_VtxDef3() objePrincipia associates each vertex stream with a DX_VtxDef3() object ct
that holds key information on stream properties and vertex formathat holds key information on stream properties and vertex format.t.
Amongst others, the VtxDef3 object carries a flag to signal the Amongst others, the VtxDef3 object carries a flag to signal the
GPU that the stream is to be rendered with the legacy fixed GPU that the stream is to be rendered with the legacy fixed
function pipeline. Leave this flag alone if using shaders.function pipeline. Leave this flag alone if using shaders.

VtxDef3() specification mechanisms:VtxDef3() specification mechanisms:
Explicit definition in script.Explicit definition in script. The definition can be (a) discrete flags The definition can be (a) discrete flags
or (b) enumerated DECL statements. Preor (b) enumerated DECL statements. Pre--DX9 FVF streams must DX9 FVF streams must
use discrete flags. DECL statements allow much richer designs.use discrete flags. DECL statements allow much richer designs.
From file.From file. Vertex streams loaded from a VSF file inherit the format Vertex streams loaded from a VSF file inherit the format
stored in the preamble of the vertex stream data. Vertex stream stored in the preamble of the vertex stream data. Vertex stream
imported from 3DS or other formats fall in the following categorimported from 3DS or other formats fall in the following category.y.
Implicit initialization upon creating vertex streams.Implicit initialization upon creating vertex streams. In this case, the In this case, the
format is inferred from the creation context (e.g. structure of format is inferred from the creation context (e.g. structure of
internal SX_internal SX_MeshUTLMeshUTL component) or from format hints/arguments component) or from format hints/arguments
used by the vertex stream constructors.used by the vertex stream constructors.

57

D103B – Geometry DataD103B – Geometry Data

Vertex format text mode descriptor formatVertex format text mode descriptor format
Usage:Type:[stream:usage index]:[method]Usage:Type:[stream:usage index]:[method]
ComaComa--separated code sequence describing streamseparated code sequence describing stream
CaseCase--insensitiveinsensitive

Usage codes, required:Usage codes, required:
POS: untransformed positionPOS: untransformed position
PIX: transformed positionPIX: transformed position
NORM: normal vectorNORM: normal vector
TAN: tangent vectorTAN: tangent vector
BINORM: BINORM: binormal binormal vectorvector
COLOR: color dataCOLOR: color data
CD,CS: specific diffuse or specular color dataCD,CS: specific diffuse or specular color data
TEX: texture coordinatesTEX: texture coordinates
WEIGHT: vertex skinning weight dataWEIGHT: vertex skinning weight data
INDEX: vertex skinning index dataINDEX: vertex skinning index data
POINT: sprite point fieldPOINT: sprite point field

58

D103B – Geometry DataD103B – Geometry Data

Type codes, required:Type codes, required:
1F..4F : one to four 321F..4F : one to four 32--bit floatsbit floats
COLOR: four unsigned bytes packed in DWORDCOLOR: four unsigned bytes packed in DWORD
U: four unsigned bytes packed in an indexU: four unsigned bytes packed in an index
U4N: four unsigned bytes pack normalized by 255.0fU4N: four unsigned bytes pack normalized by 255.0f
S2,S4: two/four component signed SHORT packed in indexS2,S4: two/four component signed SHORT packed in index
S2N,S4N: two/four component signed SHORT normalized by 32767.0fS2N,S4N: two/four component signed SHORT normalized by 32767.0f
SU2N,SU4N: two/four component unsigned SHORT normalized by 65525SU2N,SU4N: two/four component unsigned SHORT normalized by 65525.0f.0f
F162,F164: two or fourF162,F164: two or four--component 16component 16--bit floatbit float
UDEC3, DEC3N: three component 10UDEC3, DEC3N: three component 10--1010--10bit data10bit data

Stream:Stream:UsageIndexUsageIndex codes, optionalcodes, optional
Usage indexes indicate special processing by the vertex unit. ReUsage indexes indicate special processing by the vertex unit. Refer to the fer to the
DirectX documentation for the values that can be used.DirectX documentation for the values that can be used.

Method code, optionalMethod code, optional
Controls Controls tesselation tesselation and displacement mapping processing by the vertex and displacement mapping processing by the vertex
unit. Refer to the DirectX documentation for the values that canunit. Refer to the DirectX documentation for the values that can be used.be used.

59

D103B – Geometry DataD103B – Geometry Data

DX_VtxDef3() definer contentsDX_VtxDef3() definer contents
HumanHuman--readable vertex/index buffer format specs. readable vertex/index buffer format specs.
GPUGPU--translated vertex/index buffer formatstranslated vertex/index buffer formats
Vertex buffer memory pool typeVertex buffer memory pool type
Vertex buffer usage codesVertex buffer usage codes
Vertex buffer locking codes for DMA accessVertex buffer locking codes for DMA access
Index buffer memory pool typeIndex buffer memory pool type
Index buffer usage codesIndex buffer usage codes
Index buffer locking codes for DMA accessIndex buffer locking codes for DMA access
Vertex and index elements unit memory sizeVertex and index elements unit memory size
Vertex and index elements memory footprintVertex and index elements memory footprint

60

D103B – Geometry DataD103B – Geometry Data

The geometric placement and appearance of vertex data The geometric placement and appearance of vertex data
on screen is mainly controlled by:on screen is mainly controlled by:

Kinexes Kinexes (world transform, skinning, frame states)(world transform, skinning, frame states)
Camera view definition (introduced in D103D)Camera view definition (introduced in D103D)
GPU render statesGPU render states

GeometryGeometry--controlling GPU render states (many states controlling GPU render states (many states
unique to the fixedunique to the fixed--function pipeline are not listed)function pipeline are not listed)

RS_ZENABLE, RS_ZWRITEENABLE + all RS_ZENABLE, RS_ZWRITEENABLE + all depthstencil depthstencil RSRS
RS_FILLMODERS_FILLMODE
RS_SHADEMODERS_SHADEMODE
RS_CULLMODERS_CULLMODE
RS_CLIPPINGRS_CLIPPING
RS_LOCALVIEWERRS_LOCALVIEWER
RS_NORMALIZENORMALSRS_NORMALIZENORMALS
RS_CLIPPLANEENABLE + all user clip plane settingsRS_CLIPPLANEENABLE + all user clip plane settings

61

D103B – KinexesD103B – Kinexes

Kinexes are essential Principia components that Kinexes are essential Principia components that
hold data describing the state of an object. All hold data describing the state of an object. All
object renders are accompanies by a object renders are accompanies by a kinexkinex..

Principia provides many kinexes to power a wide Principia provides many kinexes to power a wide
range of animation, skinning and special effects.range of animation, skinning and special effects.

All kinexes hold a world (or model) transform All kinexes hold a world (or model) transform
matrix that transforms vertex coordinates from matrix that transforms vertex coordinates from
object model space to world, and thereby object model space to world, and thereby
positions, rotates and distorts geometry. positions, rotates and distorts geometry.

This chapter shows how to set and use this This chapter shows how to set and use this
matrix to control rendered primitive geometry.matrix to control rendered primitive geometry.

62

D103B – KinexesD103B – Kinexes

All All kinexes kinexes share the following data, referencing share the following data, referencing
the current state of the rendered geometrythe current state of the rendered geometry

M: World transform matrix (of interest here)M: World transform matrix (of interest here)

B[]: Set of vertex blend (skinning) matrices, optionalB[]: Set of vertex blend (skinning) matrices, optional

T[]: Set of T[]: Set of texcoordtexcoord/general use matrices, optional/general use matrices, optional

Frame: Animation keyframe indexFrame: Animation keyframe index

Value: Animation keyframe interpolation positionValue: Animation keyframe interpolation position

Timer: Animation timer indexTimer: Animation timer index

State/Locus: Animation state referencesState/Locus: Animation state references

Material: Optional material reference. Should only be Material: Optional material reference. Should only be
used to map transform matrices to shader registers.used to map transform matrices to shader registers.

63

D103B – Kinex World MatrixD103B – Kinex World Matrix

World (model) transform matrix KXWorld (model) transform matrix KX-->M>M
Determines object position in the world by standard 3D Determines object position in the world by standard 3D MxVMxV
operation applied to object root coordinates in model space. operation applied to object root coordinates in model space.

The object can be placed anywhere, rotated and distorted at The object can be placed anywhere, rotated and distorted at
will within the limits of affine transformations.will within the limits of affine transformations.

Access to any kinex model matrix “M”:Access to any kinex model matrix “M”:
Script (RO): multiple methods of setting matrix availableScript (RO): multiple methods of setting matrix available

Code (RW): Code (RW): KinexKinex-->M is world transform 4x4 matrix object>M is world transform 4x4 matrix object

Accessing 3D object model matrices:Accessing 3D object model matrices:
3D objects instantiate their own internal kinex by copy from 3D objects instantiate their own internal kinex by copy from
the template kinex provided in the script. the template kinex provided in the script.

To access the object model matrix, reference the object and To access the object model matrix, reference the object and
then access its kinex model matrix using ::then access its kinex model matrix using ::GetPositionGetPosition(). Do (). Do
not access the object template not access the object template kinexkinex used in script directly.used in script directly.

64

D103B – Kinex Syntax (1) D103B – Kinex Syntax (1)

Model matrix script specification methods Model matrix script specification methods
Direct specification of world transform 4x4 matrixDirect specification of world transform 4x4 matrix
Sequential product of transformsSequential product of transforms
Combination of rotation, translation and scalingCombination of rotation, translation and scaling
PseudoPseudo--linguistic shorthand (KPS) specificationlinguistic shorthand (KPS) specification

Tags for direct specification:Tags for direct specification:
<Row1>: World transform matrix row 1 (M11..M14)…<Row1>: World transform matrix row 1 (M11..M14)…
<Row4>: World transform matrix row 4 (M41..M44)<Row4>: World transform matrix row 4 (M41..M44)
Follows Microsoft® DirectX® conventionFollows Microsoft® DirectX® convention
M41..M43 are translation/positioning coordinatesM41..M43 are translation/positioning coordinates

Tags for sequential product specification:Tags for sequential product specification:
<Trans1..5>: Sequence of up to five model kinexes<Trans1..5>: Sequence of up to five model kinexes
The resulting matrix is M = M1 x M2 x M3 x M4 x M5The resulting matrix is M = M1 x M2 x M3 x M4 x M5
Follows Microsoft® DirectX® convention for the Follows Microsoft® DirectX® convention for the MxMMxM order order
of sequenced transforms (M1 is the first transform…etc).of sequenced transforms (M1 is the first transform…etc).

65

D103B – Kinex Syntax (2) D103B – Kinex Syntax (2)

Tags for specifying a combination of affine transforms:Tags for specifying a combination of affine transforms:

TrsVecTrsVec: X,Y,Z translation components: X,Y,Z translation components

SclCtrSclCtr: X,Y,Z of world transform scaling center: X,Y,Z of world transform scaling center

SclAmtSclAmt: X,Y,Z scaling factors: X,Y,Z scaling factors

RotCtrRotCtr: X,Y,Z of rotation axis center point: X,Y,Z of rotation axis center point

RotAxeRotAxe: Unit vector X,Y,Z along rotation axis: Unit vector X,Y,Z along rotation axis

RotAmtRotAmt: Rotation amount in degrees: Rotation amount in degrees

Special Special kinexeskinexes

A A kinex kinex with a unit world transform matrix takes the object with a unit world transform matrix takes the object
raw coordinates in model space as they are, and uses them raw coordinates in model space as they are, and uses them
as world coordinates for viewing.as world coordinates for viewing.

A NULL kinex argument for most operations requiring a kinex A NULL kinex argument for most operations requiring a kinex
means to use the previous world transform state.means to use the previous world transform state.

66

D103B – Kinex Syntax (3) D103B – Kinex Syntax (3)

Kinex Kinex pseudolinguisticpseudolinguistic shorthand specification (KPS)shorthand specification (KPS)
Shorthand languageShorthand language--like string description of the most like string description of the most
common transforms that make up the kinex matrices. While common transforms that make up the kinex matrices. While
not as general as the typed kinexes, KPS is much shorter, not as general as the typed kinexes, KPS is much shorter,
easier to read, and suitable for production scripts.easier to read, and suitable for production scripts.

KPS usageKPS usage
When specifying simple kinexes, KPS string on the definition When specifying simple kinexes, KPS string on the definition
line, instead of tag list below.line, instead of tag list below.

Whenever expecting an argument kinex by reference, enter Whenever expecting an argument kinex by reference, enter
KPS string instead of kinex.KPS string instead of kinex.

KPS syntaxKPS syntax
“Token;Token;Token;…” ;“Token;Token;Token;…” ;--delimited sequencedelimited sequence

“Token” = “Token” = CmdCmd((ArgArg,,ArgArg…)…)

““CmdCmd” is a transform or definition command” is a transform or definition command

Transforms are chained from left (first) to right (last)Transforms are chained from left (first) to right (last)

67

D103B – Kinex Syntax (4) D103B – Kinex Syntax (4)

KPS commandsKPS commands
DeclDecl(*): specifies which kinex matrix will be described(*): specifies which kinex matrix will be described
Rot(a,x,y,z): rotate by <a> around axis (x,y,z)Rot(a,x,y,z): rotate by <a> around axis (x,y,z)
RotxRotx(a)…(a)…RotyRoty(a): rotate by <a> around respective axis(a): rotate by <a> around respective axis
YprYpr(y,p,r): Yaw(y,p,r): Yaw--pitchpitch--roll rotation. All angles are in degrees.roll rotation. All angles are in degrees.
MulMul(x,y,z): scale around origin by <x,y,z> factors(x,y,z): scale around origin by <x,y,z> factors
MovMov(x,y,z): translate by (x,y,z)(x,y,z): translate by (x,y,z)
Set(Code,Index): sets theSet(Code,Index): sets the kinexkinex matrix denoted by <code> matrix denoted by <code>
at shader register <Index>. Essential for shader rendering.at shader register <Index>. Essential for shader rendering.

Matrix declarationsMatrix declarations
If no declaration present, subsequent commands are If no declaration present, subsequent commands are
assumed to reference the base kinex matrix M.assumed to reference the base kinex matrix M.
If declaration present, all commands refer to the matrix If declaration present, all commands refer to the matrix
referenced in the declarationreferenced in the declaration
Available declarations: M, B1..B3, T0..T7 for respective base, Available declarations: M, B1..B3, T0..T7 for respective base,
blend and texture coordinate/general transform matrices.blend and texture coordinate/general transform matrices.

68

D103B – Kinex Syntax (5) D103B – Kinex Syntax (5)

Principia rotation conventionsPrincipia rotation conventions
Many Principia components require the specification of Many Principia components require the specification of
multiple rotations (e.g. bone animation multiple rotations (e.g. bone animation keyframeskeyframes).).
There are many conventions to orient and sequence multiple There are many conventions to orient and sequence multiple
rotation angles. Principia uses the two most standard rotation angles. Principia uses the two most standard
formulations: quaternion and ETBformulations: quaternion and ETB--YPR.YPR.

Quaternion rotationQuaternion rotation
Best practice. Rotation data internally derived by specifying Best practice. Rotation data internally derived by specifying
CCW rotation angle about an axis vector Rot(a,x,y,z).CCW rotation angle about an axis vector Rot(a,x,y,z).

Euler Euler TaitTait--Bryan angles YawBryan angles Yaw--PitchPitch--Roll (ETBRoll (ETB--YPR) rotationYPR) rotation
Common aeronautical practice. Do not confuse with the Common aeronautical practice. Do not confuse with the
other dozen YPR conventions (such as the one in DirectX).other dozen YPR conventions (such as the one in DirectX).
First rotation: Roll, about (body) xFirst rotation: Roll, about (body) x--axisaxis
Second rotation: Pitch, about (body) ySecond rotation: Pitch, about (body) y--axisaxis
Third rotation: Yaw, about (body) zThird rotation: Yaw, about (body) z--axisaxis
Arguments in script entered in reverse Arguments in script entered in reverse YprYpr(yaw,pitch,roll)(yaw,pitch,roll)

69

D103B – Kinex Syntax (6)D103B – Kinex Syntax (6)

KPS example: The nonKPS example: The non--KPS definition of these KPS definition of these
simple andsimple and keyframedkeyframed kinexes would run over kinexes would run over
200 script lines, and be much harder to read.200 script lines, and be much harder to read.

##define (KX_BODY_EX05) as <KINEX_I>
#tag QLerpM = (YES)
#tag FrameK = (0 , "Decl(M);Rotz(-10);")
#tag FrameK = (1 , "Decl(M);Rotz(0.0);")
#tag FrameK = (2 , "Decl(M);Rotz(10.);")
#tag FrameK = (3 , "Decl(M);Rotz(0.0);")

##define <KINEX_S> = (KX_HIPPL_EX05, "Decl(M);Rot(60,0,1,0);Mov(1,0,0);")
##define <KINEX_S> = (KX_KNEEL_EX05, "Decl(M);Rot(30,0,1,0);Mov(1,0,0);")

##define (KX_MEM1L_EX05) as <KINEX_I>
#tag QLerpM = (YES)
#tag FrameK = (0 , "Decl(M);Rot(-10,0,0,1)")
#tag FrameK = (1 , "Decl(M);Rot(0,0,0,1)")
#tag FrameK = (2 , "Decl(M);Rot(50,0,0,1)")
#tag FrameK = (3 , "Decl(M);Rot(0,0,0,1)")

##define (KX_MEM2L_EX05) as <KINEX_I>
#tag QLerpM = (YES)
#tag FrameK = (0 , "Decl(M);Rot(10,0,0,1)")
#tag FrameK = (1 , "Decl(M);Rot(0,0,0,1)")
#tag FrameK = (2 , "Decl(M);Rot(-40,0,0,1)")
#tag FrameK = (3 , "Decl(M);Rot(0,0,0,1)")

##define <KINEX_S> = (KX_HIPPR_EX05, "Decl(M);Rot(120,0,1,0);Mov(-1,0,0);")
##define <KINEX_S> = (KX_KNEER_EX05, "Decl(M);Rot(-30,0,1,0);Mov(1,0,0);")

##define (KX_MEM1R_EX05) as <KINEX_I>
#tag QLerpM = (YES)
#tag FrameK = (0 , "Decl(M);Rot(50,0,0,1)")
#tag FrameK = (1 , "Decl(M);Rot(0,0,0,1)")
#tag FrameK = (2 , "Decl(M);Rot(-10,0,0,1)")
#tag FrameK = (3 , "Decl(M);Rot(0,0,0,1)")

##define (KX_MEM2R_EX05) as <KINEX_I>
#tag QLerpM = (YES)
#tag FrameK = (0 , "Decl(M);Rot(-40,0,0,1)")
#tag FrameK = (1 , "Decl(M);Rot(0,0,0,1)")
#tag FrameK = (2 , "Decl(M);Rot(10,0,0,1)")
#tag FrameK = (3 , "Decl(M);Rot(0,0,0,1)")

70

D103B – Concept OutlineD103B – Concept Outline

D103B starts with some very simple basics. This D103B starts with some very simple basics. This
is the gist of topics covered in this demo:is the gist of topics covered in this demo:

Understanding how to position geometry, and how Understanding how to position geometry, and how
to create and read VFS3 file data.to create and read VFS3 file data.
Accessing and creating geometry data from within Accessing and creating geometry data from within
the user code.the user code.
Importing geometry data from 3DS formats, and Importing geometry data from 3DS formats, and
understanding how to best import and use complex understanding how to best import and use complex
multimulti--mesh, multimesh, multi--material objects.material objects.
Advanced topics such as streaming, skinning or Advanced topics such as streaming, skinning or
procedural generation are covered separately.procedural generation are covered separately.

Despite being called geometry primitives, Despite being called geometry primitives,
vertex streams may carry data that has little to vertex streams may carry data that has little to
do with geometry (e.g. color, occlusion factors).do with geometry (e.g. color, occlusion factors).

71

The cubes are simple 3D primitives, loaded from a VSF file. Each cube vertex
carries position, normal and color data fields. To allow sharp edges to be
rendered, the geometry is not indexed. The cubes are positioned in 3D world
space using a simple kinex. The cube on the left is rendered using the fixed
function pipeline, that on the right using a simple Blinn vertex/pixel shader.

72

D103B:Ex01 - Geometry D103B:Ex01 - Geometry

Objectives:Objectives:
Show geometry and vertex data basicsShow geometry and vertex data basics

Requirements and Implementation:Requirements and Implementation:
Manually create a cube geometry in a FVS format and load it Manually create a cube geometry in a FVS format and load it
into a Principia vertex stream componentinto a Principia vertex stream component
Render two instances of this vertex stream, one using the Render two instances of this vertex stream, one using the
fixed function pipeline, one using basic shaders. fixed function pipeline, one using basic shaders.
Position the two instances at different locations, using two Position the two instances at different locations, using two
different scripted different scripted kinexeskinexes..

Notes:Notes:
Following Ex01, the use of the fixed function pipeline will be Following Ex01, the use of the fixed function pipeline will be
limited to the simplest cases, and will not be highlighted. limited to the simplest cases, and will not be highlighted.
Refer to Chapter 11 to learn more about this legacy rendering Refer to Chapter 11 to learn more about this legacy rendering
method (and some basics taken for granted here).method (and some basics taken for granted here).
The screen and depth buffers used to render are created The screen and depth buffers used to render are created
during the graphic interface creation in the script include. during the graphic interface creation in the script include.

73

D103B:Ex01 - GeometryD103B:Ex01 - Geometry

Fixed function cube implementation:Fixed function cube implementation:
Define a material with the proper render statesDefine a material with the proper render states
Load the geometry from data. Use a definer that specifies to useLoad the geometry from data. Use a definer that specifies to use a FVFa FVF--style style
vertex format (required for fixed function rendering).vertex format (required for fixed function rendering).
Encapsulate the geometry into a mesh (material+geometry), which Encapsulate the geometry into a mesh (material+geometry), which is is
combined into an object (combined into an object (kinexkinex+mesh). Use the +mesh). Use the kinexkinex to place the object to place the object
where it is wanted, using the KPS scripting described earlier.where it is wanted, using the KPS scripting described earlier.
The object is added to a world that is part of a viewer control The object is added to a world that is part of a viewer control which renders which renders
the world as part of the scene controls sequence.the world as part of the scene controls sequence.

##define (M_EX01_FIX) as <MATERIAL_3A>
#tag RS = (RS_FILLMODE , RA_SOLID)
#tag RS = (RS_CULLMODE , RA_CULLCCW)
#tag TS = (TS_COLOROP , TO_SELECTARG2 , 0)
#tag TS = (TS_COLORARG1 , TA_TEXTURE , 0)
#tag TS = (TS_COLORARG2 , TA_DIFFUSE , 0)
#tag TS = (TS_ALPHAOP , TO_SELECTARG2 , 0)
#tag TS = (TS_ALPHAARG1 , TA_TEXTURE , 0)
#tag TS = (TS_ALPHAARG2 , TA_DIFFUSE , 0)
#tag VShader = (NONE)
#tag PShader = (NONE)

##define (G_EX01_FIX) as <VERTEXSET_3A>
#tag File = "Files_Media\Mesh_UnitCube_RND.vsf"
#tag Definer = (VTD_FVF_FILE)
#tag LoadNow = (1)

##define (R_EX01_FIX) as <MESH_3A>
#tag Component = (0 , M_EX01_FIX , G_EX01_FIX)

##define (O_EX01_FIX) as <GENOBJECT_3A>
#tag Construct = ("Decl(M);Mul(0.7,0.7,0.8);Rot(-20,0,-45);Mov(0.5,0.0,0.0);" , R_EX01_FIX , NONE)

74

D103B:Ex01 - GeometryD103B:Ex01 - Geometry

ShaderShader--based cube implementation:based cube implementation:
Define the shaders and reference them in the material used. RemeDefine the shaders and reference them in the material used. Remember to mber to
include the material from the NAV3D script that maps shader consinclude the material from the NAV3D script that maps shader constant tant
registers to the light and camera parameters (to enable our contregisters to the light and camera parameters (to enable our control panel). rol panel).
Load the geometry from data. Use a standard definer. From this pLoad the geometry from data. Use a standard definer. From this point on, oint on,
everything else is the same as with the fixedeverything else is the same as with the fixed--function cube.function cube.

##define (VS_EX01_BLINN) as <VSHADER_3A>
#tag File = "Ex01_VS_Blinn.shd"
#tag ShaderFcn = "Ex01_VS_Blinn"
#tag ShaderAsm = (NO)
#tag ShaderVs = (1.1)

##define (PS_EX01_DIFUS) as <PSHADER_3A>
#tag File = "Ex01_PS_Diffuse.shd"
#tag ShaderFcn = "Ex01_PS_Diffuse"
#tag ShaderAsm = (NO)
#tag ShaderVs = (1.2)

##define (M_EX01_SHD) as <MATERIAL_3A>
#tag RS = (RS_FILLMODE , RA_SOLID)
#tag RS = (RS_CULLMODE , RA_CULLCCW)
#tag VShader = (VS_EX01_BLINN)
#tag PShader = (PS_EX01_DIFUS)
#tag Material = (MSHD_STDCAMLIT , -)

##define (G_EX01_SHD) as <VERTEXSET_3A>
#tag File = "Files_Media\Mesh_UnitCube_RND.vsf"
#tag Definer = (VTD_DCL_FILE)
#tag LoadNow = (1)

##define (R_EX01_SHD) as <MESH_3A>
#tag Component = (0 , M_EX01_SHD , G_EX01_SHD)

##define (O_EX01_SHD) as <GENOBJECT_3A>
#tag Construct = ("Decl(M);Mul(0.8,0.7,0.9);Rot(-20,0,-45);Mov(0.0,0.5,0.0);Set(tM,0);" , R_EX01_SHD , NONE)

75

D103B:Ex01 - GeometryD103B:Ex01 - Geometry

What is in the VSF file that holds the vertex data?What is in the VSF file that holds the vertex data?
TEXT
VS3A
TRIANGLE LIST PRIMITIVE 3D OBJECT
@@ Vertex format specification
POS:3F, NORM:3F, COLOR:COLOR
@@ Primitive type
4
@@ Indexed flag
0
@@ Reserved bootstrap section
0
@@ Local material code
0
@@ Total number of vertices and indices
36
0
@@ Number of frames
1
@@ Frame#0: Primitive first vertex index, primitive count, number of vertices
0 12 36
@@ Frame#0: Locus of first frame in index array and index count per frame
0 0
@@ Vertex data Tr01
1.00 1.00 1.00 0.0 0.0 1.0 AAFFFFFF
1.00 0.00 1.00 0.0 0.0 1.0 AAFFFFFF
0.00 0.00 1.00 0.0 0.0 1.0 AAFFFFFF
@@ Vertex data Tr02
1.00 1.00 1.00 0.0 0.0 1.0 AAFFFFFF
0.00 0.00 1.00 0.0 0.0 1.0 AAFFFFFF
0.00 1.00 1.00 0.0 0.0 1.0 AAFFFFFF

@@ Vertex data Tr03
0.00 1.00 1.00 0.0 1.0 0.0 AAFFFFFF
0.00 1.00 0.00 0.0 1.0 0.0 AAFFFFFF
1.00 1.00 1.00 0.0 1.0 0.0 AAFFFFFF
@@ Vertex data Tr04
0.00 1.00 0.00 0.0 1.0 0.0 AAFFFFFF
1.00 1.00 0.00 0.0 1.0 0.0 AAFFFFFF
1.00 1.00 1.00 0.0 1.0 0.0 AAFFFFFF
@@ Vertex data Tr05
1.00 0.00 0.00 1.0 0.0 0.0 AAFFFFFF
1.00 1.00 1.00 1.0 0.0 0.0 AAFFFFFF
1.00 1.00 0.00 1.0 0.0 0.0 AAFFFFFF
@@ Vertex data Tr06
1.00 0.00 0.00 1.0 0.0 0.0 AAFFFFFF
1.00 0.00 1.00 1.0 0.0 0.0 AAFFFFFF
1.00 1.00 1.00 1.0 0.0 0.0 AAFFFFFF
@@ Vertex data Tr07
0.00 1.00 1.00 -1.0 0.0 0.0 AAFFFFFF
0.00 0.00 1.00 -1.0 0.0 0.0 AAFFFFFF
0.00 0.00 0.00 -1.0 0.0 0.0 AAFFFFFF
@@ Vertex data Tr08
0.00 1.00 1.00 -1.0 0.0 0.0 AAFFFFFF
0.00 0.00 0.00 -1.0 0.0 0.0 AAFFFFFF
0.00 1.00 0.00 -1.0 0.0 0.0 AAFFFFFF
@@ Vertex data Tr09
0.00 1.00 0.00 0.0 0.0 -1.0 AAFFFFFF
0.00 0.00 0.00 0.0 0.0 -1.0 AAFFFFFF
1.00 1.00 0.00 0.0 0.0 -1.0 AAFFFFFF
@@ Vertex data Tr10
0.00 0.00 0.00 0.0 0.0 -1.0 AAFFFFFF
1.00 0.00 0.00 0.0 0.0 -1.0 AAFFFFFF
1.00 1.00 0.00 0.0 0.0 -1.0 AAFFFFFF
@@ Vertex data Tr11
0.00 0.00 0.00 0.0 -1.0 0.0 AAFFFFFF
1.00 0.00 1.00 0.0 -1.0 0.0 AAFFFFFF
1.00 0.00 0.00 0.0 -1.0 0.0 AAFFFFFF
@@ Vertex data Tr12
0.00 0.00 0.00 0.0 -1.0 0.0 AAFFFFFF
0.00 0.00 1.00 0.0 -1.0 0.0 AAFFFFFF
1.00 0.00 1.00 0.0 -1.0 0.0 AAFFFFFF

76

D103B – VSF File Structure (1) D103B – VSF File Structure (1)

Standard content management flagsStandard content management flags
3 items (TEXT/BINF, VSF3, name)3 items (TEXT/BINF, VSF3, name)

Vertex format descriptors (Vertex format descriptors (VtxDef VtxDef structure block)structure block)
Usage:Type:[stream:usage index]:[method]Usage:Type:[stream:usage index]:[method]
ComaComa--separated code sequence describing streamseparated code sequence describing stream
CaseCase--insensitiveinsensitive
For fixed pipeline rendering, the format descriptors must translFor fixed pipeline rendering, the format descriptors must translate ate
to a valid FVF format (e.g. cannot have multiple positions)to a valid FVF format (e.g. cannot have multiple positions)

Primitive type/topology Primitive type/topology specifierspecifier
1=point list1=point list
2=line list, 3=line strip2=line list, 3=line strip
4=triangle list, 5=triangle strip, 6=triangle fan4=triangle list, 5=triangle strip, 6=triangle fan

Indexed flag. Indexed flag.
No indexed geometry used No indexed geometry used –– we want sharp edges everywhere.we want sharp edges everywhere.

Reserved code for advanced data Reserved code for advanced data
Not discussed here, 0 if no socket is presentNot discussed here, 0 if no socket is present

77

D103B – VSF File Structure (2) D103B – VSF File Structure (2)

Number of frames Number of frames
Instances of vertex set in different animation configurations)Instances of vertex set in different animation configurations)

Frame data block (for all frames)Frame data block (for all frames)
Primitive first vertex index, primitive count, number of verticePrimitive first vertex index, primitive count, number of verticess

Locus of first frame in index array and index count per frameLocus of first frame in index array and index count per frame

Vertex data block (repeated per frame)Vertex data block (repeated per frame)
Vertex data stream (1 vertex per line for text files)Vertex data stream (1 vertex per line for text files)

Index data block (repeated per frame)Index data block (repeated per frame)
Primitive forming indices into vertex array (1 element per line)Primitive forming indices into vertex array (1 element per line)

Note that materials data or embedded geometry subNote that materials data or embedded geometry sub--
components are not embedded in Principia VSF files. components are not embedded in Principia VSF files.

Principia favors flexibility and separates the material from thePrincipia favors flexibility and separates the material from the
geometry rendered. Principia has separate material read procedurgeometry rendered. Principia has separate material read procedures.es.

78

D103B:Ex01 - GeometryD103B:Ex01 - Geometry

Geometry and ShadersGeometry and Shaders
The vertex shader declaration section states which constant regiThe vertex shader declaration section states which constant registers sters
hold the various transform matrices (and other environment data)hold the various transform matrices (and other environment data)..
The vertex shader declaration also describes the vertex format. The vertex shader declaration also describes the vertex format. This This
should match what is in the definer (although most hardware woulshould match what is in the definer (although most hardware would d
forgive not declaring elements present in the stream).forgive not declaring elements present in the stream).

(. . . The register bindings are from VS_Std_Include.shd common include file . . .)
float4x4 mWrld : register (c0); // Api: world matrix
float4x4 mViewProj : register (c4); // Api: VxP matrix
float4x4 mWrldView : register (c8); // Api: WxV matrix
float4x4 mView : register (c12); // Api: view matrix
float4x4 mProj : register (c16); // Api: proj matrix
float3 vLDir : register (c31); // Api: light dir
float4 vLAmbi : register (c33); // Api: ambient color
float4 vLDiff : register (c34); // Api: diffuse color
float4 vLSpec : register (c35); // Api: spcular color
float4 vMPwr : register (c46); // Api: matl power
float3 vEPos : register (c47); // Api: eye pos
float3 vEDir : register (c48); // Api: eye dir
float3 vPort : register (c49); // Api: viewport size
float3 vTime : register (c50); // Api: world timer

struct VS_INPUT
{ // Inbound vertex buffer stream

float3 vPosition : POSITION ;
float3 vNormal : NORMAL ;
float4 vDiffuse : COLOR0 ;

};

struct VS_OUTPUT
{ // Extant processed vertex stream

float4 vPosition : POSITION ;
float4 vDiffuse : COLOR0 ;
float4 vSpecular : COLOR1 ;

};

79

D103B:Ex01 - GeometryD103B:Ex01 - Geometry

Geometry and ShadersGeometry and Shaders
The vertex shader program generates transformed vertex coordinatThe vertex shader program generates transformed vertex coordinates es
in screen space to pass on to the in screen space to pass on to the rasterizerrasterizer. It also determines the lit . It also determines the lit
vertex color in 3D space. These tasks are all geometryvertex color in 3D space. These tasks are all geometry--driven, and driven, and
will be detailed in later demos dedicated to shader design. will be detailed in later demos dedicated to shader design.

VS_OUTPUT Ex01_VS_Blinn(const VS_INPUT In)
{ VS_OUTPUT Out = (VS_OUTPUT) 0;

/* Position world-view-projection transform and position output */
wPos = mul(float4(In.vPosition,1.0f), mWrld);
Out.vPosition = mul(wPos, mViewProj);

/* Normals world transform */
wNorm = mul(In.vNormal, (float3x3) mWrld);
wNorm = normalize(wNorm);

/* Common light, view and half vectors in world space */
wLite = normalize(-vLDir); // Lite pos - Vertex pos
wView = vEPos - wPos.xyz; // View pos - Vertex pos
wView = normalize(wView);
wHalf = 0.5*(wLite+wView);
wHalf = normalize(wHalf);

/* Lambert diffuse and ambient per-vertex color output */
LdotN = saturate(dot(wNorm, wLite));
Out.vDiffuse.rgb = (vLDiff*LdotN*In.vDiffuse.rgb + vLAmbi);
Out.vDiffuse.a = float1(1.0);

/* Blinn specular per-vertex color output */
HdotN = saturate(dot(wNorm, wHalf));
Out.vSpecular.rgb = vLSpec*pow(HdotN, vMPwr);
Out.vSpecular.a = float1(1.0);

/* Output stream to pixel shader */
return Out;

}

80

D103B:Ex01 - GeometryD103B:Ex01 - Geometry

What is in our two definers?What is in our two definers?
When Principia reads geometry from a file, the definer format isWhen Principia reads geometry from a file, the definer format is overridden by overridden by
the vertex format that is described in the file data.the vertex format that is described in the file data.
Note that each definer has different FVF flag. ProgrammableNote that each definer has different FVF flag. Programmable--based shader based shader
rendering is the standard today, but FVF renders can be useful arendering is the standard today, but FVF renders can be useful at times.t times.

We described what we wanted to render in script, We described what we wanted to render in script,
and let Principia do it. It is exactly the same idea and let Principia do it. It is exactly the same idea
for much more complex renders for much more complex renders –– just materials, just materials,
objects and worlds require more script, not code!objects and worlds require more script, not code!

##define (VTD_DCL_FILE) as <DC_VTXDEF3>
#tag IsFVF = (NO)
#tag Format = "POS:3F, NORM:3F, TEX:2F"
#tag VtxMemory = (GMEM_DEVICE)
#tag IdxMemory = (GMEM_DEVICE)
#tag IndexFmt = (INDEX16)
#tag IsDynamic = (-)
#tag IsWrtonly = (-)

##define (VTD_FVF_FILE) as <DC_VTXDEF3>
#tag IsFVF = (YES)
#tag Format = "POS:3F, NORM:3F, TEX:2F"
#tag VtxMemory = (GMEM_DEVICE)
#tag IdxMemory = (GMEM_DEVICE)
#tag IndexFmt = (INDEX16)
#tag IsDynamic = (-)
#tag IsWrtonly = (-)

81

This geometry is generated within the user
code. It is a regular mesh wrapped in the
shape of the torus. Albeit identical in sight,
the torus geometry on the right is indexed.

82

D103B:Ex02 - Geometry D103B:Ex02 - Geometry

ObjectivesObjectives
Show how to access geometry data from the user code Show how to access geometry data from the user code
for both indexed and nonfor both indexed and non--indexed vertex sets.indexed vertex sets.

Requirements and ImplementationRequirements and Implementation
Define object and vertex geometry in script. Do not Define object and vertex geometry in script. Do not
load the vertex data however, leave it all blank.load the vertex data however, leave it all blank.
Create the geometry in the user code (Create the geometry in the user code (torustorus) by) by
writing directly into the vertex set data streams. writing directly into the vertex set data streams.
Use a rectangular Use a rectangular discretization discretization in UV space and create in UV space and create
two geometry instances: nontwo geometry instances: non--indexed and indexed.indexed and indexed.

NotesNotes
In most cases, the user will not need to access vertex In most cases, the user will not need to access vertex
data directly from the code. The purpose of this demo data directly from the code. The purpose of this demo
is to reinforce the structure concepts shown earlier.is to reinforce the structure concepts shown earlier.

83

D103B:Ex02 - Geometry D103B:Ex02 - Geometry

Conceptual designConceptual design
UV space: a natural surfaceUV space: a natural surface--bound coordinate system bound coordinate system
that is used for that is used for discretizingdiscretizing the surface and generating the surface and generating
texture coordinates (typically the same as UV). texture coordinates (typically the same as UV).

UV space is also referred to as natural or curvilinear UV space is also referred to as natural or curvilinear
coordinate system. A reading in analytical geometry is coordinate system. A reading in analytical geometry is
useful for working in texturing and surface modeling.useful for working in texturing and surface modeling.

Topologically, most surface Topologically, most surface discretizations discretizations in UV space in UV space
are rectangular meshes. Here, the UV space is defined are rectangular meshes. Here, the UV space is defined
by the circumference and elevation angle of the by the circumference and elevation angle of the torustorus. .

The major point of the demo is not so much how The major point of the demo is not so much how
the the torus torus is discretized, but how we define the is discretized, but how we define the
geometry and create its data structures in code.geometry and create its data structures in code.

84

D103B:Ex02 - GeometryD103B:Ex02 - Geometry

Definition of geometry in the script. Note that we explicitly Definition of geometry in the script. Note that we explicitly
size the empty vertex sets, and tell Principia not to load size the empty vertex sets, and tell Principia not to load
them as it parses the script. The load step (data allocation them as it parses the script. The load step (data allocation
and generation) will be done in the user code.and generation) will be done in the user code.

There are two geometry instances: indexed and not.There are two geometry instances: indexed and not.

##define (VTD_FVF_EX02) as <DC_VTXDEF3>
#tag IsFVF = (YES)
#tag Format = "POS:3F, NORM:3F, COLOR:COLOR, TEX:2F"
#tag VtxMemory = (GMEM_DEVICE)
#tag IdxMemory = (GMEM_DEVICE)
#tag IndexFmt = (INDEX16)
#tag IsDynamic = (-)
#tag IsWrtonly = (-)

##define (G_EX02_NOINDEX) as <VERTEXSET_3A>
#tag File = (NONE)
#tag Definer = (VTD_FVF_EX02)
#tag Indexed = (NO)
#tag LoadNow = (NO)
#tag Geometry = (G_TRILIST)
#tag NbVertex = (-)
#tag NbFrames = (-)

##define (G_EX02_INDEXED) as <VERTEXSET_3A>
#tag File = (NONE)
#tag Definer = (VTD_FVF_EX02)
#tag Indexed = (YES)
#tag LoadNow = (NO)
#tag Geometry = (G_TRILIST)
#tag NbVertex = (-)
#tag NbFrames = (-)

85

D103B:Ex02 - GeometryD103B:Ex02 - Geometry

User code: The generation of geometry with rectangular User code: The generation of geometry with rectangular
mesh topology is mesh topology is genericizedgenericized and encapsulated: and encapsulated:

The mesh is The mesh is parametrizedparametrized in terms of normalized U and V coordinates, in terms of normalized U and V coordinates,
covering the interval [0,1]. Here, U is the circumferential azimcovering the interval [0,1]. Here, U is the circumferential azimuth.uth.

The geometry terms of the U and V parameters is contained in a fThe geometry terms of the U and V parameters is contained in a function that unction that
is passed as argument to the geometry generation routine. is passed as argument to the geometry generation routine.

To change the geometry, just change this function, technically kTo change the geometry, just change this function, technically known as a nown as a
geometry kernel. The generation function can be left alone, or cgeometry kernel. The generation function can be left alone, or can be an be
tweaked by the user to add extra features such as coordinate settweaked by the user to add extra features such as coordinate sets…etc.s…etc.

void Pgv_Ex02_Init (void* VArg)
BGN_ACTOR_CODE{

/* Auxiliary local variables */
DECLARE_LOCAL static GX_VSet3A* VSet_Noindex = NULL;
DECLARE_LOCAL static GX_VSet3A* VSet_Indexed = NULL;

/* Predetermined size for torus discretization */
DECLARE_LOCAL const int NU = 48;
DECLARE_LOCAL const int NV = 48;

/* Connect the vertex set to the script object */
VSet_Noindex = (GX_VSet3A*) Principia->GetReferenceTo("G_EX02_NOINDEX");
VSet_Indexed = (GX_VSet3A*) Principia->GetReferenceTo("G_EX02_INDEXED");

/* Generate the vertex set geometry using a simple mesh distorted according to the kernel */
Usr_GenerateTriangleVSet_FromKernel (VSet_Noindex, NU, NV, Usr_Geom_GreenCopperTorus, false);
Usr_GenerateIndexedVSet_FromKernel (VSet_Indexed, NU, NV, Usr_Geom_GreenCopperTorus, false);

END_ACTOR_CODE}

86

D103B:Ex02 - GeometryD103B:Ex02 - Geometry

Generation function, nonGeneration function, non--indexed geometry:indexed geometry:
Vertex stream is sized * GX_VSet3A is ::Loaded() to allocate bufVertex stream is sized * GX_VSet3A is ::Loaded() to allocate buffers * Frame fers * Frame
boundaries are defined * Vertex set is open for DMA access * Worboundaries are defined * Vertex set is open for DMA access * Working vertex king vertex
point linear array is generated by evaluating the kernel across point linear array is generated by evaluating the kernel across UV … UV …

void Usr_GenerateTriangleVSet_FromKernel
(GX_VSet3A* VSet, int NU, int NV, void(*Geom3DKrn)(flt, flt, flt&, flt&, flt&, DWORD&, DWORD&, flt&, flt&), bool InvertN)
BGN_ACTOR_CODE{

/* Auxiliary local variables */
DECLARE_LOCAL static flt SurfU,SurfV = ZERO;
DECLARE_LOCAL static int ku,kv, kf,L, Fo = 0x00;

/* Auxiliary local variables */
DECLARE_LOCAL static flt* x = NULL;
. . .

/* Initialize working arrays for vertex data */
SAFE_ALLOC(x , (NU+1)*(NV+1), flt);
. . .

/* Size and load the vertex set to create the GPU data buffers. Note that NU and NV count */
/* subdivisions along the shape UV directions. Vertex counts are therefore NU+1 and NV+1. */
VSet->NFrames = 0x01;
VSet->NVTot = 6*NU*NV;
VSet->Park();
VSet->Load();

/* Specify the frame boundaries and per-frame primitive count */
VSet->FrameVO[0] = 0;
VSet->FrameNP[0] = 2*NU*NV; // triangle count = 2xNUxNV
VSet->FrameNV[0] = 6*NU*NV; // vertex count = 3xtriangle count

/* Open vertex set buffer to data access */
VSet->StartVrtexDma();

/* Vertex set definition: vertices, texture coordinates and local colors */
for (ku=0; ku<=NV; ku++) begin{
for (kv=0; kv<=NU; kv++) begin{

L = kv*(NV+1) + ku;
SurfU = float(ku) / float(NV);
SurfV = float(kv) / float(NU);
Geom3DKrn(SurfU,SurfV, x[L],y[L],z[L], cD[L],cS[L], u0[L], v0[L]);

endfor}
endfor}

87

D103B:Ex02 - GeometryD103B:Ex02 - Geometry

Generation function, nonGeneration function, non--indexed geometry:indexed geometry:
. NormalsNormals are calculated on the working mesh * The working linear array are calculated on the working mesh * The working linear array
points are mapped to the vertex elements in the buffer. This is points are mapped to the vertex elements in the buffer. This is the procedure the procedure
heart. Each UV patch has two triangles and six vertices * DMA acheart. Each UV patch has two triangles and six vertices * DMA access to the cess to the
vertex set is closed to allow rendering * The rest is cleanup. vertex set is closed to allow rendering * The rest is cleanup.

/* Vertex set definition: vertex normals and enclosure correction */
MeshNormals(Nx, Ny, Nz, x, y, z, 0, NV+1, 0, NU+1, NV+1, InvertN);

/* Vertex set definition: fill vertex data buffer */
Fo = VSet->FrameVO[0];
for (ku=NV; ku>0; ku--) begin{
for (kv=0; kv<NU; kv++) begin{

L = (kv)*(NV+1) + (ku);
VSet->SetP (Fo+0, x [L], y [L], z [L]);
VSet->SetN (Fo+0, Nx[L], Ny[L], Nz[L]);
VSet->SetT0(Fo+0, u0[L], v0[L]);
VSet->SetC (Fo+0, cD[L], cS[L]);
. . .
L = (kv)*(NV+1) + (ku);
VSet->SetP (Fo+5, x [L], y [L], z [L]);
VSet->SetN (Fo+5, Nx[L], Ny[L], Nz[L]);
VSet->SetT0(Fo+5, u0[L], v0[L]);
VSet->SetC (Fo+5, cD[L], cS[L]);
Fo = Fo + 6;

endfor}
endfor}

/* Close vertex set buffer to data access */
VSet->StopVrtexDma();

/* Use this if setting a separate material for the torus */
VSet->Material = NULL;

/* Cleanup */
SAFE_FREE (x);
. . .

END_ACTOR_CODE}

88

D103B:Ex02 - GeometryD103B:Ex02 - Geometry

Geometry Kernel function defines the Geometry Kernel function defines the torus torus in UV space:in UV space:

The kernelThe kernel--parametric generator in the user code is a very parametric generator in the user code is a very
simplified example of the powerful procedural generators simplified example of the powerful procedural generators
provided by Principia. To use these, you do not need to provided by Principia. To use these, you do not need to
write any code, just describe your kernel in script. Now you write any code, just describe your kernel in script. Now you
see the power of Principia! see the power of Principia!

void Usr_Geom_GreenCopperTorus(flt U, flt V, flt& x, flt& y, flt& z, DWORD& cD, DWORD& cS, flt &TexU, flt &TexV)
BGN_ACTOR_CODE{

. . .
DECLARE_LOCAL const flt R1 = 0.70f;
DECLARE_LOCAL const flt R2 = 0.35f;

/* Parametric representation: texture coordinates */
TexU = U;
TexV = V;

/* Parametric representation: geometric shape */
U = 90.0f - 360.0f*U;
V = 360.0f*V;
DR = R2*DCOS(U);
DZ = R2*DSIN(U);
PC = DCOS(V);
PS = DSIN(V);
RT = R1+DR;
x = PC*RT;
y = PS*RT;
z = DZ;

/* Parametric representation: surface colors */
cD = 0xFF22BB33;
cS = 0xFFFF1111;

END_ACTOR_CODE}

89

D103B:Ex02 - GeometryD103B:Ex02 - Geometry

Generation function, indexed geometry: The general flow is Generation function, indexed geometry: The general flow is
the same, but the sizing and mapping of vertex data reflects the same, but the sizing and mapping of vertex data reflects
that the topology will be described in an index buffer.that the topology will be described in an index buffer.

void Usr_GenerateIndexedVSet_FromKernel
(GX_VSet3A* VSet, int NU, int NV, void(*Geom3DKrn)(flt, flt, flt&, flt&, flt&, DWORD&, DWORD&, flt&, flt&), bool InvertN)
BGN_ACTOR_CODE{

. . .
/* Auxiliary local variables */
DECLARE_LOCAL static flt* x = NULL;
. . .

/* Initialize working arrays for vertex data */
SAFE_ALLOC(x , (NU+1)*(NV+1), flt);
. . .

/* Size and load the vertex set to create the GPU data buffers. Note that NU and NV count */
/* subdivisions along the shape UV directions. Vertex counts are therefore NU+1 and NV+1. */
VSet->Indexed = true; // In case we forgot to define it as indexed …
VSet->NFrames = 0x01;
VSet->NVTot = (NU+1)*(NV+1); // vertex count = NU+1 x NV+1 unique vertices
VSet->NITot = 6*NU*NV; // vertices that need to be indexed is still 3xtriangle count
VSet->Park();
VSet->Load();

/* Specify the frame boundaries and per-frame primitive count */
VSet->FrameVO[0] = 0; // first vertex at position 0
VSet->FrameNP[0] = 2*NU*NV; // triangle count
VSet->FrameNV[0] = VSet->NVTot; // vertex count
VSet->FrameIO[0] = 0; // first index at position 0
VSet->FrameIN[0] = VSet->NITot; // index count

/* Open geometry buffers to data access */
VSet->StartDmaMode();

/* Vertex set definition: vertices, texture coordinates and local colors */
for (ku=0; ku<=NV; ku++) begin{
for (kv=0; kv<=NU; kv++) begin{

L = kv*(NV+1) + ku;
SurfU = float(ku) / float(NV);
SurfV = float(kv) / float(NU);
Geom3DKrn(SurfU,SurfV, x[L],y[L],z[L], cD[L],cS[L], u0[L], v0[L]);

endfor}
endfor}

90

D103B:Ex02 - GeometryD103B:Ex02 - Geometry

Generation function, indexed geometry: The vertices are Generation function, indexed geometry: The vertices are
now uniquely defined and held in a linear array. Our index now uniquely defined and held in a linear array. Our index
buffer holds the 3xTriangle count trianglebuffer holds the 3xTriangle count triangle--forming indexes.forming indexes.

/* Vertex set definition: vertex normals and enclosure correction */
MeshNormals(Nx, Ny, Nz, x, y, z, 0, NV+1, 0, NU+1, NV+1, InvertN);

/* Geometry definition: fill vertex data buffer */
Fo = VSet->FrameVO[0];
for (ku=0; ku<=NV; ku++) begin{
for (kv=0; kv<=NU; kv++) begin{

L = (kv)*(NV+1) + (ku);
VSet->SetP (Fo, x [L], y [L], z [L]);
VSet->SetN (Fo, Nx[L], Ny[L], Nz[L]);
VSet->SetT0(Fo, u0[L], v0[L]);
VSet->SetC (Fo, cD[L], cS[L]);
Fo++;

endfor}
endfor}

/* Geometry definition: fill index data buffer */
Fo = VSet->FrameIO[0];
for (ku=0; ku<NV; ku++) begin{
for (kv=0; kv<NU; kv++) begin{

L = (kv)*(NV+1) + (ku);
VSet->SetIndex(Fo, L); Fo++;
VSet->SetIndex(Fo, L+1); Fo++;
VSet->SetIndex(Fo, L+NU+2); Fo++;
VSet->SetIndex(Fo, L); Fo++;
VSet->SetIndex(Fo, L+NU+2); Fo++;
VSet->SetIndex(Fo, L+NU+1); Fo++;

endfor}
endfor}

/* Close geometry buffers to data access */
VSet->StopDmaMode();

/* Use this if setting a separate material for the torus */
VSet->Material = NULL;

/* Cleanup */
SAFE_FREE (x);
. . .

END_ACTOR_CODE}

91

D103B:Ex02 - GeometryD103B:Ex02 - Geometry

Vertex data Vertex data accessor accessor functions. functions.
Principia provides many functions to access vertex and index bufPrincipia provides many functions to access vertex and index buffer data streams. To fer data streams. To
use these functions, the vertex set component must be opened foruse these functions, the vertex set component must be opened for DMA access in the DMA access in the
ApiApi, and DMA, and DMA--closed before rendering (using ::Start/closed before rendering (using ::Start/StopDMAModeStopDMAMode() methods).() methods).

Common vertex data access functions, block transfer:Common vertex data access functions, block transfer:
void Buffer (void*void Buffer (void* ExtDataExtData,, int NbVerticesint NbVertices););
void Buffer (void*void Buffer (void* ExtDataExtData,, int VtxIdxAint VtxIdxA,, int VtxIdxBint VtxIdxB););
void Export (void*void Export (void* ExtDataExtData,, int NbVerticesint NbVertices););
void Export (void*void Export (void* ExtDataExtData,, int VtxIdxAint VtxIdxA,, int VtxIdxBint VtxIdxB););
void Set/void Set/GetP GetP ((intint NA,NA, int int NB,NB, fltflt* x,* x, fltflt* y,* y, fltflt* z);* z);
void Set/void Set/GetCD GetCD ((intint NA,NA, intint NB,NB, int kFint kF, DWORD*, DWORD* CdCd);); … etc.… etc.

Common vertex data access functions by element:Common vertex data access functions by element:
fltflt** Get/Get/SetVertex SetVertex ((intint i);i);
int int Get/Get/SetIndex SetIndex ((intint i);i);
void Get/Set (void Get/Set (intint i,i, fltflt& D,& D, int Ofsint Ofs););
void Get/void Get/SetP SetP ((intint i,i, fltflt& x,& x, fltflt& y,& y, fltflt& z);& z);
void Get/void Get/SetN SetN ((intint i,i, fltflt& x,& x, fltflt& y,& y, fltflt& z);& z);
void Get/void Get/SetC SetC ((intint i, DWORD&i, DWORD& CdCd, DWORD& Cs);, DWORD& Cs);
void Get/SetT0/…T7 (void Get/SetT0/…T7 (intint i,i, fltflt& u,& u, fltflt& v);& v);
void Get/void Get/SetT SetT ((int cDexint cDex,, intint i,i, fltflt& u,& u, fltflt& v,& v, fltflt& w,& w, fltflt& r);& r);
void Get/void Get/SetB SetB ((intint i,i, fltflt& B0,& B0, fltflt& B1,& B1, fltflt& B2, DWORD& BW);& B2, DWORD& BW);
void Get/void Get/SetX SetX ((intint i,i, fltflt& S); & S); … etc.… etc.

92

Let’s hold on to our torus for a bit longer. It
looks unchanged. However, it is generated in
the user code via the intermediary of the very
powerful Principia::SX_MeshUTL() geometry
data management component.

93

D103B:Ex03 - Geometry D103B:Ex03 - Geometry

ObjectivesObjectives
Show a more advanced modality for creating and Show a more advanced modality for creating and
managing geometry data from within the user code.managing geometry data from within the user code.

Requirements and ImplementationRequirements and Implementation
Define a Define a renderablerenderable Mesh3A in the script and leave its Mesh3A in the script and leave its
geometry field blankgeometry field blank
In the user code, create the geometry using the In the user code, create the geometry using the
Principia SX_Principia SX_MeshUTL MeshUTL (unstructured mesh) internal (unstructured mesh) internal
component. Use whatever format you want.component. Use whatever format you want.
Create the vertex set from the SX_Create the vertex set from the SX_MeshUTLMeshUTL, and add it , and add it
to the to the renderable renderable Mesh3A from the script. Render! Mesh3A from the script. Render!

NotesNotes
This is a much better, faster and more flexible way to This is a much better, faster and more flexible way to
create and manage data from within the user code.create and manage data from within the user code.

94

D103B:Ex03 - Geometry D103B:Ex03 - Geometry

SX_SX_MeshUTLMeshUTL()()
General purpose unstructured mesh internal Principia General purpose unstructured mesh internal Principia
component. Workhorse for code geometry operations.component. Workhorse for code geometry operations.

Mesh defined as a series of 3D data points, with Mesh defined as a series of 3D data points, with
triangle face connectivity list (like an indexed triangle face connectivity list (like an indexed
VSet3A). This is the simplest standard mesh definition.VSet3A). This is the simplest standard mesh definition.

Isolates the user from having to worry about Isolates the user from having to worry about
managing format data fields and lowmanaging format data fields and low--level tasks.level tasks.

Features tons of topological, geometry and data Features tons of topological, geometry and data
access operations.access operations.

Provides easy animation frame access.Provides easy animation frame access.

SX_SX_MeshUTLMeshUTL() can be easily converted into () can be easily converted into
different GX_different GX_VSetVSet() components and vice() components and vice--versa.versa.

95

D103B:Ex03 - GeometryD103B:Ex03 - Geometry

This is our script. We do not even need to define the This is our script. We do not even need to define the
geometry object therein, since it will be created internally.geometry object therein, since it will be created internally.

##define (M_EX03) as <MATERIAL_3A>
#tag RS = (RS_FILLMODE , RA_SOLID)
#tag RS = (RS_CULLMODE , RA_CULLCCW)
#tag TS = (TS_COLOROP , TO_SELECTARG2 , 0)
#tag TS = (TS_COLORARG1 , TA_TEXTURE , 0)
#tag TS = (TS_COLORARG2 , TA_DIFFUSE , 0)
#tag TS = (TS_ALPHAOP , TO_SELECTARG2 , 0)
#tag TS = (TS_ALPHAARG1 , TA_TEXTURE , 0)
#tag TS = (TS_ALPHAARG2 , TA_DIFFUSE , 0)

##define (R_EX03) as <MESH_3A>
#tag Component = (0 , M_EX03 , NONE)

##define (O_EX03) as <GENOBJECT_3A>
#tag Construct = ("Decl(M);Mul(0.5,0.5,0.5);" , R_EX03 , NONE)

##define (WRLD_EX03) as <WORLD_3A>
#tag Layer_Decl = (L_ITEMS , "ITEMS" , - , - , 16)
#tag Layer_Item = (L_ITEMS , O_EX03)
#tag Layer_Item = (L_ITEMS , O_AXISYS)

96

D103B:Ex03 - GeometryD103B:Ex03 - Geometry

User code: The generation process is encapsulated in a User code: The generation process is encapsulated in a
function that uses the same kernel as Ex02. Note that we function that uses the same kernel as Ex02. Note that we
need to add the generated geometry to the <R_EX03> need to add the generated geometry to the <R_EX03>
renderable renderable mesh defined in script.mesh defined in script.

void Pgv_Ex03_Init (void* VArg)
BGN_ACTOR_CODE{

/* Auxiliary local variables */
DECLARE_LOCAL static GX_Mesh3A* Mesh = NULL;
DECLARE_LOCAL static GX_VSet3A* VSet = NULL;

/* Predetermined size for torus discretization */
DECLARE_LOCAL const int NU = 48;
DECLARE_LOCAL const int NV = 48;

/* Generate the vertex set geometry using the Principia mesh helper component */
Usr_GenerateTriangleVSet_FromKernel_PrincipiaMeshHelper (VSet, NU, NV, Usr_Geom_GreenCopperTorus, false);

/* Connect the vertex set to the script objects so that it can render */
Mesh = (GX_Mesh3A*) Principia->GetReferenceTo("R_EX03");
Mesh->Element[0] = VSet;

END_ACTOR_CODE}

97

D103B:Ex03 - GeometryD103B:Ex03 - Geometry

The generation function is much simpler and cleaner too.The generation function is much simpler and cleaner too.
void Usr_GenerateTriangleVSet_FromKernel_PrincipiaMeshHelper
(GX_VSet3A* &VSet, int NU, int NV, void(*Geom3DKrn)(flt, flt, flt&, flt&, flt&, DWORD&, DWORD&, flt&, flt&), bool InvertN)
BGN_ACTOR_CODE{

/* Auxiliary local variables */
DECLARE_LOCAL static flt SurfU,SurfV = ZERO;
DECLARE_LOCAL static int ku,kv,L,NbVert,NbTrig = 0x00;
DECLARE_LOCAL DX_VtxDef3* WrkVDef = NULL;
DECLARE_LOCAL SX_MeshUTL* WrkMesh = NULL;

/* Initialize definer and mesh components */
NbVert = (NU+1)*(NV+1);
NbTrig = 2*NU*NV;
WrkVDef = new DX_VtxDef3("POS:3F, NORM:3F, COLOR:COLOR, TEX:2F");
WrkMesh = new SX_MeshUTL(NbVert, NbTrig, WrkVDef);

/* WrkMesh definition: point positions, texture coordinates and local colors */
for (ku=0; ku<=NV; ku++) begin{
for (kv=0; kv<=NU; kv++) begin{

L = kv*(NV+1) + ku;
SurfU = float(ku) / float(NV);
SurfV = float(kv) / float(NU);
Geom3DKrn(SurfU,SurfV, WrkMesh->x[L],WrkMesh->y[L],WrkMesh->z[L], WrkMesh->CD[L], . . . WrkMesh->v0[L]);

endfor}
endfor}

/* WrkMesh definition: face topology description via indexing */
int Fo = 0x00;
for (ku=0; ku<NV; ku++) begin{
for (kv=0; kv<NU; kv++) begin{

L = (kv)*(NV+1) + (ku);
WrkMesh->F[Fo] = L ; Fo++;
WrkMesh->F[Fo] = L+NU+2; Fo++;
WrkMesh->F[Fo] = L+1 ; Fo++;
WrkMesh->F[Fo] = L ; Fo++;
WrkMesh->F[Fo] = L+NU+1; Fo++;
WrkMesh->F[Fo] = L+NU+2; Fo++;

endfor}
endfor}

/* Calculate the mesh normals */
WrkMesh->SurfaceNormals(InvertN, true /*smooth seams*/);

/* Generation of the vertex set component and cleanup */
VSet = new GX_VSet3A(WrkMesh, WrkVDef, true /*indexed*/);
SAFE_DELETE (WrkMesh);
. . .

END_ACTOR_CODE}

98

D103B:Ex03 - GeometryD103B:Ex03 - Geometry

Some common vertex stream creation methods:Some common vertex stream creation methods:
CONS GX_VSet3A (SX_Stream* CfgStream);
CONS GX_VSet3A (char* FName, DX_VtxDef3* iDef);
CONS GX_VSet3A (GX_VSet3A* ProtoObj);
CONS GX_VSet3A (DX_VtxDef3* iDef);
CONS GX_VSet3A (char* Fmt, char* Geom, int NPF, int NVF, int NF);
CONS GX_VSet3A (SX_MeshUTL* SrcMesh, DX_VtxDef3* iDef, bool AsIndexed);

Some common SX_Some common SX_MeshUTLMeshUTL() methods:() methods:
CONS SX_MeshUTL (int NbVtces, int NbFaces, DX_VtxDef3* VtxDef);
CONS SX_MeshUTL (SX_MeshRUV* SrcMesh, DWORD* Mask, DX_VtxDef3* VtxDef);
CONS SX_MeshUTL (GX_VSet3A *VtxSet, int FrameIdx);
CONS SX_MeshUTL (SX_MeshUTL* SrcMesh);
void SurfaceNormals/Tangent (bool Invert, bool SmoothSeam);
void FaceNormals/Tangent (bool Invert);
void Condense (bool PreserveSeams);
int Map_CommonVertices (int FaceA, int FaceB, int &ComVA, int& ComVB, int &ComVC);
void Map_AdjacentFaces ();
void MaskedExtract (SX_MeshRUV* SrcMesh, DWORD* Mask);
void DisplaceMap (SX_FunctionS* fU, SX_FunctionS* fV, SX_FunctionS* fN);
void Attach (SX_MeshUTL* Adder, bool MergeB, flt MergeD);
int DistanceToMesh/Edge (flt X, flt Y, flt Z, flt& D);
void SplitUVSeams (flt CritU, flt CritV);
void AddUniqueEdge (int v0, int v1);
void WrteVSetFrame (GX_VSet3A* VtxSet, int FrameIdx);
void WrteVSetStream (GX_VSet3A* VtxSet, flt* Data, int OffsetAddress, int FrameIdx);
void WrteVSetNormals (GX_VSet3A* VtxSet);

99

This geometry is loaded from a 3DS
file, which is a very established 3D
industry standard format.

The 3DS data in Ex04 is simple – it
has only two smoothing groups, no
materials or multiple objects. Yet, it
shows the many topology control
options the Principia 3DS loader
makes available for loading 3DS data
into renderable vertex streams.

The vertex stream of this cone is a
single primitive that preserves the
sharp edges and smooth welds of the
original 3DS model.

100

D103B:Ex04 - Geometry D103B:Ex04 - Geometry

ObjectivesObjectives
Show how to load 3DS data in vertex streams and how Show how to load 3DS data in vertex streams and how
to control their basic topology and structure.to control their basic topology and structure.
Show the recursive structure of GX_VSet3A and how it Show the recursive structure of GX_VSet3A and how it
fits in the Principia *3A* rendering framework.fits in the Principia *3A* rendering framework.

Key RequirementsKey Requirements
Load and draw a simple 3DS object with two Load and draw a simple 3DS object with two
smoothing groups and no materials.smoothing groups and no materials.
Explore how the topology of loaded vertex data is Explore how the topology of loaded vertex data is
subtly (or not so subtly) controlled by the user.subtly (or not so subtly) controlled by the user.

NotesNotes
Principia features the best 3DS loader available! It can Principia features the best 3DS loader available! It can
also load geometry data from many other popular 3D also load geometry data from many other popular 3D
formats using its array of configurable procedures.formats using its array of configurable procedures.

101

D103B – 3DS Max FilesD103B – 3DS Max Files

3DS files are complex constructs with multiple:3DS files are complex constructs with multiple:
ObjectsObjects

Meshes per objectMeshes per object

Composite materials per meshComposite materials per mesh

Smoothing groups (fragments of smooth surface)Smoothing groups (fragments of smooth surface)

Loading 3DS files into GX_VSet3A objectsLoading 3DS files into GX_VSet3A objects
Done by the intermediary of a Principia FX_Import3DS procedure, Done by the intermediary of a Principia FX_Import3DS procedure,
which can be specified in script or else internally generated.which can be specified in script or else internally generated.

Depending on the procedure configuration, multiple smoothing Depending on the procedure configuration, multiple smoothing
groups, materials, meshes… from the 3DS file etc, will result ingroups, materials, meshes… from the 3DS file etc, will result in a a
composite GX_VSet3A object, with an embedded subset of additionacomposite GX_VSet3A object, with an embedded subset of additional l
GX_VSet3A components (with their own materials if applicable). GX_VSet3A components (with their own materials if applicable).

GX_VSet3A loaded from 3DS files can be saved into VSF format. IfGX_VSet3A loaded from 3DS files can be saved into VSF format. If
present, each embedded component will be saved into a separate present, each embedded component will be saved into a separate
VSF file with a distinctive name.VSF file with a distinctive name.

102

D103B – 3DS Max FilesD103B – 3DS Max Files

FX_Import3DS loading procedure:FX_Import3DS loading procedure:
Stage 1: Load each “distinct geometry fragment” from the 3DS filStage 1: Load each “distinct geometry fragment” from the 3DS file e
into an individual into an individual MeshUTL MeshUTL object. Such fragments are characterized object. Such fragments are characterized
by separate smoothing groups, material, mesh and object.by separate smoothing groups, material, mesh and object.

Stage 2: Optional assembly of the Stage 2: Optional assembly of the MeshUTL MeshUTL fragments from stage 1 fragments from stage 1
into bigger fragments combining objects, materials …etc based oninto bigger fragments combining objects, materials …etc based on
user “welding” parameters for geometry, user “welding” parameters for geometry, normals normals …etc.…etc.

Stage 3: Optional transfer of the resulting Stage 3: Optional transfer of the resulting MeshUTL MeshUTL data into a data into a
renderable renderable GX_VSet3A component with embedded GX_VSet3A component with embedded
GX_VSet3A/material structures if needed.GX_VSet3A/material structures if needed.

The power of the FX_Import3DS procedure:The power of the FX_Import3DS procedure:
It gives the user very broad control over the topological mappinIt gives the user very broad control over the topological mapping of g of
the complex 3DS data into simple working Principia structures.the complex 3DS data into simple working Principia structures.

Many Principia components use the FX_Import3DS procedure to Many Principia components use the FX_Import3DS procedure to
access its access its MeshUTL MeshUTL data in its full detail. So can you!data in its full detail. So can you!

103

D103B – 3DS Max FilesD103B – 3DS Max Files

Why fineWhy fine--tune how all the distinct 3DS geometry tune how all the distinct 3DS geometry
fragments are loaded into vertex data?fragments are loaded into vertex data?

Fragment structure and performance are closely linked. Fragment structure and performance are closely linked.
Performance hit#1: Today’s Performance hit#1: Today’s GPUs GPUs hate material changes.hate material changes.
Performance hit#2: Today’s Performance hit#2: Today’s GPUs GPUs render a long primitive faster than render a long primitive faster than
many small primitives (even with the same triangle count).many small primitives (even with the same triangle count).
Performance hit#3: Index and reduce redundant vertex data.Performance hit#3: Index and reduce redundant vertex data.

Basic production organization suggestions:Basic production organization suggestions:
Use indexed output unless dictated by artistic imperatives.Use indexed output unless dictated by artistic imperatives.
Assemble smoothing group fragments into single vertex primitivesAssemble smoothing group fragments into single vertex primitives
with seam preservation (or dispense with groups altogether).with seam preservation (or dispense with groups altogether).
Assemble different material fragments into single vertex primitiAssemble different material fragments into single vertex primitives ves
and bake the materials onto textures.and bake the materials onto textures.
Make material changes as little as possible by grouping sameMake material changes as little as possible by grouping same--
material geometry renders together.material geometry renders together.

104

D103B – Embedded GX_VSet3AD103B – Embedded GX_VSet3A

Flat texture im
age data

G
X_Surface:

GX_VSet3A per frame

GX_Material per frame

GX_Mesh3A (arg:Kinex)
Render key-framed
Material3A(k) + VSet3A(K)

Components Animators

Components GX_Mesh3A

Components Kinexes

GX_Object** (Api)
Update comp kinexes,
render comp meshes

Frame calculation rules

MX_Animator* (by: Kinex)

Render embedded VSet3A

Render vertex buffer frame

Execute GX_Material3A()

GX_VSet3A (arg:frame)

Per-primitive shader regs.

GPU shaders and textures

GPU state commands

Phase controller

GX_Material3A:

Execute effects

Shader registers update

Shader program

G
X_*Shader3A

:

Animation state cursor

Model transform matrices

MX_Kinex*:

Note: The recursive nature of GX_VSet3A allows one to encapsulatNote: The recursive nature of GX_VSet3A allows one to encapsulate a complex structure e a complex structure
of materials and geometry (such as that contained in a 3DS file)of materials and geometry (such as that contained in a 3DS file). It is however not . It is however not
an efficient way to render in highan efficient way to render in high--performance applications, where is makes more performance applications, where is makes more
sense to group geometry by material. The Principia *3A* renderinsense to group geometry by material. The Principia *3A* rendering framework provides g framework provides
enough flexibility to configure the rendering sequence either waenough flexibility to configure the rendering sequence either way. y.

105

D103B – 3DS Loader ProcedureD103B – 3DS Loader Procedure

The Principia 3DSLoader procedure:The Principia 3DSLoader procedure:
Powerful tool for extracting 3D model content from Powerful tool for extracting 3D model content from
3DS files, storing it in manageable and accessible 3DS files, storing it in manageable and accessible
data chunks, and organizing it for 3D engine use. data chunks, and organizing it for 3D engine use.
Featuring multiple extraction modes depending on Featuring multiple extraction modes depending on
the content usage. Chapter 3 covers only the the content usage. Chapter 3 covers only the
geometry extraction mode.geometry extraction mode.

3DS extraction modes and control tags:3DS extraction modes and control tags:
Geometry (Exec_Geometry (Exec_GeomGeom tag, default=on)tag, default=on)
Animation keys (Exec_Animation keys (Exec_AnimAnim tag, default=off)tag, default=off)
Bones hierarchy (Exec_Bone tag, default=off)Bones hierarchy (Exec_Bone tag, default=off)

106

D103B – 3DS Loader ProcedureD103B – 3DS Loader Procedure

General control and output arguments:General control and output arguments:
<<ExVertexSetExVertexSet>: Output vertex stream. Will be automatically provided if the >: Output vertex stream. Will be automatically provided if the
procedure is used as a loader in a GX_VSet3A definition (as hereprocedure is used as a loader in a GX_VSet3A definition (as here). Carries). Carries
output vertex format and indexation selection.output vertex format and indexation selection.
<Transform>: A <Transform>: A kinex kinex encoding a transform to be applied to all vertices encoding a transform to be applied to all vertices
loaded from the 3DS file. Note that the raw XYZ data exported inloaded from the 3DS file. Note that the raw XYZ data exported in the 3DS file the 3DS file
is that of the mesh geometry at Frame0 relative to the world coois that of the mesh geometry at Frame0 relative to the world coordinate rdinate
system with the pivot system in its default MAX location. system with the pivot system in its default MAX location. If the pivot axis is If the pivot axis is
manipulated in MAX, the affected geometry will not load properlymanipulated in MAX, the affected geometry will not load properly..
<<NeutralPoseNeutralPose>: An advanced argument, used when importing complex >: An advanced argument, used when importing complex
skinned and/or animated characters. Covered in Part III, Chapterskinned and/or animated characters. Covered in Part III, Chapters 6 and 12.s 6 and 12.
<<FragDefinerFragDefiner>: A definer for the loaded mesh fragments structure (instead of>: A definer for the loaded mesh fragments structure (instead of
the default “POS:3F, NORM:3F, TEX:2F”). Use when you want to crthe default “POS:3F, NORM:3F, TEX:2F”). Use when you want to create eate
vertex stream data placeholders for things such as skinning datavertex stream data placeholders for things such as skinning data or occlusion or occlusion
factors. factors. What happens if conflict b/w What happens if conflict b/w FragDefiner FragDefiner and Extant and Extant VertexDefinerVertexDefiner??
If the vertex output is NULL, the 3DS loader procedure will stilIf the vertex output is NULL, the 3DS loader procedure will still load all l load all
MeshUTL MeshUTL fragments and assemble them as per stage 1 and 2 settings. In thfragments and assemble them as per stage 1 and 2 settings. In this is
mode, the 3DS loader procedure is used by a host of other Princimode, the 3DS loader procedure is used by a host of other Principia geometry pia geometry
procedures (e.g. character generators) that load raw MAX data asprocedures (e.g. character generators) that load raw MAX data as input.input.

107

D103B – 3DS Loader ProcedureD103B – 3DS Loader Procedure

Stage 1 arguments, primary Stage 1 arguments, primary MeshUTL MeshUTL fragments loaderfragments loader
FilterInObjNameFilterInObjName: If supplied, only fragments from the named objects from : If supplied, only fragments from the named objects from
the 3DS file will be loaded. Multiple include names can be specithe 3DS file will be loaded. Multiple include names can be specified with fied with
standard Principia string match flags, standard Principia string match flags, wildcards and toleranceswildcards and tolerances..
FilterExObjNameFilterExObjName: If supplied, will not load any fragments from the named : If supplied, will not load any fragments from the named
objects from the 3DS file. Use to exclude irrelevant geometry.objects from the 3DS file. Use to exclude irrelevant geometry.
FilterInMtlNameFilterInMtlName: If supplied, only fragments having the named material will : If supplied, only fragments having the named material will
be loaded. be loaded.
FilterExMtlNameFilterExMtlName: Will not load any fragments having the named material. : Will not load any fragments having the named material.
Note that these filters will work if the <Note that these filters will work if the <UseMtlUseMtl> tag is turned off. Use stage 3 > tag is turned off. Use stage 3
assembly to combine the loaded fragments after material filterinassembly to combine the loaded fragments after material filtering.g.
Object and material filters can be combined Object and material filters can be combined –– e.g. load only the “eyelash” e.g. load only the “eyelash”
material geometry fragments from the “head” object. Object filtematerial geometry fragments from the “head” object. Object filters are applied rs are applied
before material filters. This matters for exclude filters only. before material filters. This matters for exclude filters only. If an object If an object
containing a filtercontaining a filter--desired material is excluded, that little piece of material willdesired material is excluded, that little piece of material will
not be loaded. not be loaded.

108

D103B – 3DS Loader ProcedureD103B – 3DS Loader Procedure

Stage 1 arguments (continued…)Stage 1 arguments (continued…)
LdoLdo__MeshFacetizeMeshFacetize: If set, all faces of the input geometry will have distinct : If set, all faces of the input geometry will have distinct
sharp edges (regardless of vertex stream indexation and topologysharp edges (regardless of vertex stream indexation and topology))
LdoLdo__MeshUseSmgMeshUseSmg: Set to false to ignore smoothing group structure when : Set to false to ignore smoothing group structure when
defining fragments. Use when you want speed over precision.defining fragments. Use when you want speed over precision.
LdoLdo__MeshUseMtlMeshUseMtl: Set to false to ignore 3DS material groups when defining : Set to false to ignore 3DS material groups when defining
fragments. Use when the material subdivisions do not carry topolfragments. Use when the material subdivisions do not carry topological ogical
information per se, and you plan to condense the mesh anyway (e.information per se, and you plan to condense the mesh anyway (e.g. in g. in
Principia character rigging procedures)Principia character rigging procedures)
LdoLdo__FragNormalsFragNormals: Standard normal flags processing per fragment. : Standard normal flags processing per fragment.

•• Invert Invert normalsnormals. 3DS files do not carry normal data. This is calculated by for . 3DS files do not carry normal data. This is calculated by for eacheach
MeshUTLMeshUTL fragment. fragment. Set to INVALID to skip perSet to INVALID to skip per--fragment normal generationfragment normal generation..

•• NormalsNormals averaging across seams: Each averaging across seams: Each MeshUTL MeshUTL fragment can have internal seams fragment can have internal seams
with vertex position and/or UV duplication. This will average thwith vertex position and/or UV duplication. This will average the e normals normals across the across the
seams (but preserve the seams)seams (but preserve the seams)

LdoLdo__FragMeshWeldFragMeshWeld: Provides standard code and tolerance for optional : Provides standard code and tolerance for optional
welding of fragment welding of fragment MeshUTLMeshUTL internalinternal seams and redundant vertices.seams and redundant vertices.
Typical codes are WELD_NONE (default), WELD_POS (condense all veTypical codes are WELD_NONE (default), WELD_POS (condense all vertices rtices
with coincident positions even if their UV are different therebywith coincident positions even if their UV are different thereby closing all closing all
seams), and WELD_POSUV (condense vertices with same position andseams), and WELD_POSUV (condense vertices with same position and UV)UV)

109

D103B – 3DS Loader ProcedureD103B – 3DS Loader Procedure

Stage 2 arguments, Stage 2 arguments, MeshUTL MeshUTL fragment assemblyfragment assembly
AsmAsm__XSmgXSmg: Flag and seam weld code/tolerance for combining fragments : Flag and seam weld code/tolerance for combining fragments
across smoothing groups (material groups and objects are preservacross smoothing groups (material groups and objects are preserved).ed).
AsmAsm__XMatXMat: Flag and seam weld code/tolerance for combining fragments : Flag and seam weld code/tolerance for combining fragments
across materials (smoothing groups and objects are preserved).across materials (smoothing groups and objects are preserved).
AsmAsm__XObjXObj: Flag and seam weld code/tolerance for combining fragments : Flag and seam weld code/tolerance for combining fragments
across meshes and objects (smoothing groups and materials are pracross meshes and objects (smoothing groups and materials are preserved)eserved)
AsmAsm__NormalsNormals: Standard : Standard normals normals processing code for the processing code for the MeshUTL MeshUTL resulting resulting
from the assembly. Mainly used to smooth postfrom the assembly. Mainly used to smooth post--assembly seams.assembly seams.
Setting all flags on welds the 3DS data into a single Setting all flags on welds the 3DS data into a single MeshUTL MeshUTL and a single and a single
vertex stream. With prevertex stream. With pre--baked materials, this is usually the best way.baked materials, this is usually the best way.

Stage 2 arguments,Stage 2 arguments, MeshUTLMeshUTL fragmentfragment postprocessingpostprocessing
Mod_UV: Sometimes, MAX will invert texture VMod_UV: Sometimes, MAX will invert texture V--coordinates when exporting to coordinates when exporting to
3DS format (welcome to MAX, this is not the only bug it has…). W3DS format (welcome to MAX, this is not the only bug it has…). Whether it is hether it is
to correct that, or to procedurally modify imported to correct that, or to procedurally modify imported texcoordstexcoords, you can specify , you can specify
a mesh_name/name_match_code/U/V_a mesh_name/name_match_code/U/V_modfcnmodfcn(u,v,x,y,z) procedural functions (u,v,x,y,z) procedural functions
that will modify the that will modify the texcoords texcoords for select meshes (or “*” for all). for select meshes (or “*” for all).

110

D103B – 3DS Loader ProcedureD103B – 3DS Loader Procedure

Stage 3 arguments, fragments to (nested) vertex streamStage 3 arguments, fragments to (nested) vertex stream
VgnNamePrefixVgnNamePrefix: If the output stream has no name, it will be used to generate : If the output stream has no name, it will be used to generate
the name of each GX_the name of each GX_VsetVset component andcomponent and MeshUTLMeshUTL fragment as follows: fragment as follows:
VgnNamePrefixVgnNamePrefix_Obj3DS[name]_Mesh3DS[#]_Material3DS[name]__Obj3DS[name]_Mesh3DS[#]_Material3DS[name]_SmgSmg[#][#]
VgnVgn__StripMtlStripMtl: Do not map any 3DS materials from the 3DS file onto the vertex: Do not map any 3DS materials from the 3DS file onto the vertex
stream. Used to import geometry only.stream. Used to import geometry only.
VgnVgn__PureObjNamesPureObjNames: When generating vertex stream names, use only the : When generating vertex stream names, use only the
name of the 3DS object from which the stream fragment came. Usefname of the 3DS object from which the stream fragment came. Useful when ul when
the vertex output will be passed to other procedures that refer the vertex output will be passed to other procedures that refer to fragments to fragments
by their 3DS object name (we do not want material…etc. clutter iby their 3DS object name (we do not want material…etc. clutter in the name).n the name).

111

D103B:Ex04 - GeometryD103B:Ex04 - Geometry

Loading a 3DS file: Configure a loader procedure Loading a 3DS file: Configure a loader procedure
and pass it to the vertex stream ##define, along and pass it to the vertex stream ##define, along
with the 3DS file you wish to load.with the 3DS file you wish to load.

If you create a vertex stream from a 3DS file If you create a vertex stream from a 3DS file
without providing a procedure, Principia will without providing a procedure, Principia will
create a defaultcreate a default--setting loader for you (but the setting loader for you (but the
results may not be what you want).results may not be what you want).

##define (PROC_3DSLD_EX04) as <PROCDAT_IMPORT3DS>
#tag Transform = "Decl(M);Mul(1.00,1.00,1.00);"
#tag Ldo_MeshFacetize = (NO)
#tag Ldo_MeshUseSmg = (YES)
#tag Ldo_FragNormals = (NO , YES)
#tag Ldo_FragMeshWeld = (WELD_POSUV , 0.0)
#tag Asm_XSmg = (YES , WELD_NONE , 0.0)
#tag Asm_XMat = (NO , WELD_NONE , 0.0)
#tag Asm_XObj = (NO , WELD_NONE , 0.0)

##define (G_EX04) as <VERTEXSET_3A>
#tag File = "Files_Media\Mesh_Cone.3ds"
#tag Definer = (VTD_FVF_FILE)
#tag LoadProc = (PROC_3DSLD_EX04)
#tag Indexed = (YES)
#tag LoadNow = (1)

112

D103B:Ex04 - GeometryD103B:Ex04 - Geometry

BestBest--practice 3DS loader procedure settings:practice 3DS loader procedure settings:
Aim to reduce the vertex stream primitive count loaded and Aim to reduce the vertex stream primitive count loaded and
material changes. To this end, examine the core dump file to material changes. To this end, examine the core dump file to
see all the chunks that are in the 3DS file being loaded.see all the chunks that are in the 3DS file being loaded.

Here, there are only two smoothing groups. We set the “Use Here, there are only two smoothing groups. We set the “Use
Smoothing Groups” flag to yes. Otherwise, the top and Smoothing Groups” flag to yes. Otherwise, the top and
bottom of the cylinder will not have sharp seams.bottom of the cylinder will not have sharp seams.
We also set the “Assemble Smoothing Groups” flag to yes, We also set the “Assemble Smoothing Groups” flag to yes,
but turn off welding. This preserves the sharp seam, but but turn off welding. This preserves the sharp seam, but
welds the fragment meshes into a single vertex primitive.welds the fragment meshes into a single vertex primitive.

CH:0x4D4D: Ver(3)
CH:0xDATA: Data(10193)
CH:0x3D3E: Len(10)
CH:0x100: Len(10)

CH:0x4000: Obj(Cone01)
CH:0x4100: Len(10154)
CH:0x4110: NbV(244)
CH:0x4140: NbT(244)
CH:0x4160: Mtx(0.0000, 0.0000,11.4f)
CH:0x4120: NbF(432)
CH:0x4150: Smg(1)
CH:0xB000: Len(220)

113

D103B:Ex04 - GeometryD103B:Ex04 - Geometry

If we use a “WELD_POS” code If we use a “WELD_POS” code
when assembling across when assembling across
smoothing groups, the resulting smoothing groups, the resulting
primitive loses its sharp edges.primitive loses its sharp edges.

Note the importance of managing Note the importance of managing
smoothing groups when refining smoothing groups when refining
the renders of your models. the renders of your models.
Smoothing groups are Smoothing groups are
topologically separate regions topologically separate regions
delimited by sharp edges. delimited by sharp edges.

##define (PROC_3DSLD_EX04) as <PROCDAT_IMPORT3DS>

#tag Transform = "Decl(M);Mul(1.00,1.00,1.00);"
#tag Ldo_MeshFacetize = (NO)
#tag Ldo_MeshUseSmg = (YES)
#tag Ldo_FragNormals = (NO , NO)
#tag Ldo_FragMeshWeld = (WELD_POS , 0.0)
#tag Asm_XSmg = (YES , WELD_POS , 0.0)
#tag Asm_XMat = (NO , WELD_NONE , 0.0)
#tag Asm_XObj = (NO , WELD_NONE , 0.0)

114

D103B:Ex04 - GeometryD103B:Ex04 - Geometry

If we do not specify an internal If we do not specify an internal
fragment condensation (before fragment condensation (before
assembly), the seam that is within assembly), the seam that is within
the first smoothing group (cone the first smoothing group (cone
side) will not be closed. side) will not be closed.

Internal fragment condensation Internal fragment condensation
codes control seams within codes control seams within
Stage1 fragments. Assembly Stage1 fragments. Assembly
codes control seams between codes control seams between
fragments being attached fragments being attached
together in Stage3.together in Stage3.

##define (PROC_3DSLD_EX04) as <PROCDAT_IMPORT3DS>

#tag Transform = "Decl(M);Mul(1.00,1.00,1.00);"
#tag Ldo_MeshFacetize = (NO)
#tag Ldo_MeshUseSmg = (YES)
#tag Ldo_FragNormals = (NO , NO)
#tag Ldo_FragMeshWeld = (WELD_NONE , 0.0)
#tag Asm_XSmg = (YES , WELD_NONE , 0.0)
#tag Asm_XMat = (NO , WELD_NONE , 0.0)
#tag Asm_XObj = (NO , WELD_NONE , 0.0)

115

D103B:Ex04 - GeometryD103B:Ex04 - Geometry

We may want to preserve internal We may want to preserve internal
fragment seams (e.g. for fragment seams (e.g. for
texturing purposes) but have texturing purposes) but have
smooth normal across them. To smooth normal across them. To
achieve this, set the fragment achieve this, set the fragment
seam normal averaging flag. seam normal averaging flag.

A seam is basically a region where A seam is basically a region where
more than two vertices have the more than two vertices have the
same position. Many Principia same position. Many Principia
procedures take seam control procedures take seam control
flags similar to that in Import3DS.flags similar to that in Import3DS.

##define (PROC_3DSLD_EX04) as <PROCDAT_IMPORT3DS>

#tag Transform = "Decl(M);Mul(1.00,1.00,1.00);"
#tag Ldo_MeshFacetize = (NO)
#tag Ldo_MeshUseSmg = (YES)
#tag Ldo_FragNormals = (NO , YES)
#tag Ldo_FragMeshWeld = (WELD_NONE , 0.0)
#tag Asm_XSmg = (YES , WELD_NONE , 0.0)
#tag Asm_XMat = (NO , WELD_NONE , 0.0)
#tag Asm_XObj = (NO , WELD_NONE , 0.0)

116

D103B:Ex04 - GeometryD103B:Ex04 - Geometry

When the <When the <FacetizeFacetize> tag is set, > tag is set,
all all MeshUTLMeshUTL fragments have faces fragments have faces
with distinct vertices (unless you with distinct vertices (unless you
have set intrahave set intra--fragment normal fragment normal
seam averaging on).seam averaging on).

The output vertex stream may be The output vertex stream may be
indexed (as here) or not. The indexed (as here) or not. The
topology will still correctly load topology will still correctly load
from the 3DS file based on your from the 3DS file based on your
procedure settings.procedure settings.

##define (PROC_3DSLD_EX04) as <PROCDAT_IMPORT3DS>

#tag Transform = "Decl(M);Mul(1.00,1.00,1.00);"
#tag Ldo_MeshFacetize = (YES)
#tag Ldo_MeshUseSmg = (YES)
#tag Ldo_FragNormals = (NO , NO)
#tag Ldo_FragMeshWeld = (WELD_NONE , 0.0)
#tag Asm_XSmg = (YES , WELD_NONE , 0.0)
#tag Asm_XMat = (NO , WELD_NONE , 0.0)
#tag Asm_XObj = (NO , WELD_NONE , 0.0)

117

D103B:Ex04 - GeometryD103B:Ex04 - Geometry

If you deactivate or forget to If you deactivate or forget to
consider smoothing groups in consider smoothing groups in
Stage1 (loading fragments), the Stage1 (loading fragments), the
3DS model may not have all its 3DS model may not have all its
sharp edges correctly captured.sharp edges correctly captured.

This will be the case regardless of This will be the case regardless of
whether subsequent smoothing whether subsequent smoothing
group assembly is turned on or group assembly is turned on or
off. The latter codes affect only off. The latter codes affect only
how the elementary how the elementary MeshUTL MeshUTL
fragments found in the 3DS file fragments found in the 3DS file
are assembled into vertex stream are assembled into vertex stream
primitives.primitives.

##define (PROC_3DSLD_EX04) as <PROCDAT_IMPORT3DS>

#tag Transform = "Decl(M);Mul(1.00,1.00,1.00);"
#tag Ldo_MeshFacetize = (NO)
#tag Ldo_MeshUseSmg = (NO)
#tag Ldo_FragNormals = (NO , NO)
#tag Ldo_FragMeshWeld = (WELD_POS , 0.0)
#tag Asm_XSmg = (NO , WELD_NONE , 0.0)
#tag Asm_XMat = (NO , WELD_NONE , 0.0)
#tag Asm_XObj = (NO , WELD_NONE , 0.0)

118

This vertex set loaded from a multiple
objects 3DS file will have embedded
vertex sets (subsets) corresponding to
each component. The Jeep.3ds file
here, with seven objects yields a
vertex set having six subsets. All
subsets share the same material.

119

This beautiful plunger is composed of
two objects/meshes. Each mesh has a
different material. The 3DS loader
will automatically create the materials
for each sub-component of the
renderable vertex stream loaded.

120

This 3DS object is made of a single mesh with
three different materials mapped over the mesh.
Upon loading such a mesh, Principia will
automatically split the regions of the second,
third…etc materials into embedded VSet3A within
the main VSet3A.

121

This is a highly complex geometry
featuring 18 objects/meshes and 15
matterials mapped in different
proportions across the meshes. Yet, it is
loaded into a Principia VSet3A in the
same simple, yet fully controllable
manner as we loaded the cone in Ex04.

Note that 3DS object units are usually in
metric. It is a good idea to scale these
objects so that they do not exceed the
depth range of the camera depth buffer.

122

D103B:Ex05 - Geometry D103B:Ex05 - Geometry

ObjectivesObjectives
Load several more complex benchmark 3DS objectLoad several more complex benchmark 3DS object

Show how to list 3DS file components for debuggingShow how to list 3DS file components for debugging

Key RequirementsKey Requirements
Ex05a: Multiple objects in 3DS fileEx05a: Multiple objects in 3DS file
Ex05b: Multiple materials in 3DS file (1 per object)Ex05b: Multiple materials in 3DS file (1 per object)
Ex05c: Multiple materials per mesh in 3DS fileEx05c: Multiple materials per mesh in 3DS file
Ex05d: Complex set of objects, materials and groupsEx05d: Complex set of objects, materials and groups

NotesNotes
Third party 3DS files may have defects, depending on Third party 3DS files may have defects, depending on
how they were created. A typical issue is the need to how they were created. A typical issue is the need to
unify unify normalsnormals. It is a good idea to load them in MAX . It is a good idea to load them in MAX
first, apply the required modifiers, and refirst, apply the required modifiers, and re--export them.export them.

123

D103B:Ex05 - GeometryD103B:Ex05 - Geometry

To list the 3DS file chunk layout in the core dump, set the To list the 3DS file chunk layout in the core dump, set the
PCM_DIAGMODE_LIST3DS flag to 0x01 during compilation. PCM_DIAGMODE_LIST3DS flag to 0x01 during compilation.
This is for instance what the tree ornament contains:This is for instance what the tree ornament contains:

3DSFILE: Fna(Files_Media\Mesh_Ball.3ds)
CH:0x4D4D: Ver(3)
CH:0xDATA: Data(10193)
CH:0x3D3E: Len(10)
CH:0x100: Len(10)

CH:0x4000: Obj(Cone01)
CH:0x4100: Len(10154)
CH:0x4110: NbV(244)
CH:0x4140: NbT(244)
CH:0x4160: Mtx(0.0000, 0.0000,11.4f)
CH:0x4120: NbF(432)
CH:0x4150: Smg(1)
CH:0xB000: Len(220)
CH:0x4D4D: Ver(3)
CH:0xDATA: Data(135125)
CH:0x3D3E: Len(10)
CH:0x100: Len(10)
CH:0x1400: Len(10)
CH:0x1420: Len(8)
CH:0x1450: Len(10)
CH:0x2100: Len(24)
CH:0x1200: Len(24)
CH:0x1300: Len(64)
CH:0x1201: Len(6)
CH:0x1460: Len(10)
CH:0x2200: Len(40)
CH:0x2300: Len(22)
CH:0x2302: Len(40)
CH:0xA052: Len(14)
CH:0xA053: Len(14)
CH:0xA084: Len(14)
CH:0xA100: Len(8)
CH:0xA087: Len(10)
CH:0xA081: Len(6)
CH:0x8000: Len(95)

. . . -> continued

CH:0xAFFF: Mat(*GLOBAL*)
Amb:FFFFFFFF
Dif:FFFFFFFF
Spe:FFFFFFFF
Pwr:0.000000
Tex:none
Uvp:1.000000, 1.000000, 0.000000, 0.000000

CH:0xA052: Len(14)
CH:0xA053: Len(14)
CH:0xA084: Len(14)
CH:0xA100: Len(8)
CH:0xA087: Len(10)
CH:0xA081: Len(6)
CH:0x8000: Len(95)
CH:0xAFFF: Mat(GRAY)

Amb:FFFFFFFF
Dif:FFFFFFFF
Spe:FFFFFFFF
Pwr:0.000000
Tex:none
Uvp:1.000000, 1.000000, 0.000000, 0.000000

. . .

CH:0x4000: Obj(0)
CH:0x4100: Len(134035)
CH:0x4110: NbV(2680)
CH:0x4140: NbT(2680)
CH:0x4111: Len(5368)
CH:0x4160: Mtx(0.0000, 0.0000,11.4f)
CH:0x4165: Len(7)
MT: Set: Expand: (21408)
CH:0x4120: NbF(5352)
CH:0x4130: Nam(RED):NmF(4060)
CH:0x4130: Nam(GRAY):NmF(4760)
CH:0x4130: Nam(*GLOBAL*):NmF(5352)
CH:0x4150: Smg(1)

124

D103B:Ex05 - GeometryD103B:Ex05 - Geometry

Ex05 script with full set of loader geometry tags:Ex05 script with full set of loader geometry tags:

Important MAX practice note:Important MAX practice note: When exporting as When exporting as
3DS, Max truncates many names to 10 characters. 3DS, Max truncates many names to 10 characters.

When just loading geometry, this does not matter. However, When just loading geometry, this does not matter. However,
when loading animated or rigged character data, use short when loading animated or rigged character data, use short
bone and biped names for correct crossbone and biped names for correct cross--referencing.referencing.

##define (PROC_3DSLD_EX05) as <PROCDAT_IMPORT3DS>
@tag FilterInObjName = ("Name" , STRF_CONTAINS | STRF_CASELESS , 0)
@tag FilterExObjName = ("Name" , STRF_CONTAINS | STRF_CASELESS , 0)
#tag FilterInMtlName = ("red" , STRF_CONTAINS | STRF_CASELESS , 0)
@tag FilterExMtlName = ("Name" , STRF_CONTAINS | STRF_CASELESS , 0)
#tag FragDefiner = (NONE)
#tag Transform = "Decl(M);Mul(0.103,0.103,0.103);"
#tag Ldo_MeshFacetize = (NO)
#tag Ldo_MeshUseSmg = (YES)
#tag Ldo_MeshUseMtl = (YES)
#tag Ldo_FragNormals = (NO , NO)
#tag Ldo_FragMeshWeld = (WELD_POS , 0.0)
#tag Asm_XSmg = (YES , WELD_NONE , 0.0)
#tag Asm_XMat = (NO , WELD_NONE , 0.0)
#tag Asm_XObj = (NO , WELD_NONE , 0.0)
#tag Asm_Normals = (NO , NO)
#tag Vgn_NamePrefix = (NONE)
#tag Vgn_StripMtl = (NO)
#tag Vgn_PureObjName = (NO)

125

D103B:Ex05 - GeometryD103B:Ex05 - Geometry

Resulting vertex set structure: for a single mesh, Resulting vertex set structure: for a single mesh,
the embedded the embedded VSetVSet cascade looks like:cascade looks like:

Defined Vset3A own internal buffer hasDefined Vset3A own internal buffer has

First materialFirst material

Vertices for faces with first materialVertices for faces with first material

… + internal embedded VSet3A created on the fly… + internal embedded VSet3A created on the fly

Embedded Vset3A own internal buffer hasEmbedded Vset3A own internal buffer has

2nd material2nd material

Vertices for faces with 2nd materialVertices for faces with 2nd material

… + no further embedded Vset3A… + no further embedded Vset3A

Embedded Vset3A own internal buffer hasEmbedded Vset3A own internal buffer has

3rd material3rd material

Vertices for faces with 3rd materialVertices for faces with 3rd material

… + no further embedded VSet3A… + no further embedded VSet3A

126

D103B – Face CullingD103B – Face Culling

CullingCulling
Rejects backRejects back--facing polygons without renderingfacing polygons without rendering

Significantly improves performanceSignificantly improves performance

Culling conventionsCulling conventions
In Principia/DirectX, front facing polygons have vertices listedIn Principia/DirectX, front facing polygons have vertices listed
in CW order due to the leftin CW order due to the left--handed coordinate system. handed coordinate system.

Some materials (such as that for line renders) disable culling. Some materials (such as that for line renders) disable culling.
Make sure that culling is reMake sure that culling is re--enabled once these materials are enabled once these materials are
done, to avoid undone, to avoid un--intentional performance hits.intentional performance hits.

Culling and face orientation from 3DS filesCulling and face orientation from 3DS files
3DS files face index tables list the vertices listed in CCW orde3DS files face index tables list the vertices listed in CCW order. r.
Principia will automatically adjust this to conform to the Principia will automatically adjust this to conform to the
CW=Front convention.CW=Front convention.

127

D103B – Selective LoadingD103B – Selective Loading

Art production often requires specific materials or objects Art production often requires specific materials or objects
be excluded or solely included when loading a 3DS file. be excluded or solely included when loading a 3DS file.

To selectively load objects from a 3DS file:To selectively load objects from a 3DS file:
Look in the 3DS diagnostic dump for the name of the object(s) anLook in the 3DS diagnostic dump for the name of the object(s) and d
material(s) loaded during testingmaterial(s) loaded during testing

When defining the 3DS loader procedure, use the When defining the 3DS loader procedure, use the FilterInFilterIn* or * or
FilterExFilterEx* tags to selectively load or exclude fragments from the * tags to selectively load or exclude fragments from the
selected objects and/or material by name.selected objects and/or material by name.

For instance, to load only the woman’s left hand in this Ex05d, For instance, to load only the woman’s left hand in this Ex05d, you you
must define a the 3DS loader with the following tag:must define a the 3DS loader with the following tag:

Together with assembly (Ex06) the filters create a powerful Together with assembly (Ex06) the filters create a powerful
capability to acquire the exact desired geometry and capability to acquire the exact desired geometry and
topology from 3DS files into the production art pipeline.topology from 3DS files into the production art pipeline.

#tag FilterExObjName = ("Reference" , STRF_CONTAINS | STRF_CASELESS , 0)

128

The 3DS file for this robot has 99 fragments from different smoothing groups, materials
and objects. The geometry on the left is loaded after seam-preserve-fusing smoothing
groups that belong to the same material and objects. It has 29 components still. The
geometry on the rights is loaded with fusing all fragments into a single vertex buffer.

129

D103B:Ex06 - Geometry D103B:Ex06 - Geometry

ObjectivesObjectives
Show fragment assembly when loading 3DS filesShow fragment assembly when loading 3DS files

Show saving multiShow saving multi--component vertex streamscomponent vertex streams

Key RequirementsKey Requirements
Load raw 3DS file with 105 fragmentsLoad raw 3DS file with 105 fragments
Exclude the reference grid from the 3DS fileExclude the reference grid from the 3DS file
Geometry 1 with smoothing groups assembly onlyGeometry 1 with smoothing groups assembly only
Geometry 2 with all fragments assembledGeometry 2 with all fragments assembled

NotesNotes
It is a common performanceIt is a common performance--enhancing production enhancing production
practice to bake materials and aggregate primitives.practice to bake materials and aggregate primitives.
The Principia 3DS loader features powerful options to The Principia 3DS loader features powerful options to
assemble 3DS fragments in any desired manner.assemble 3DS fragments in any desired manner.

130

D103B:Ex06 - GeometryD103B:Ex06 - Geometry

Implementation: geometry loaded in pieces and Implementation: geometry loaded in pieces and
saved as individual fragments. Note the exclusion saved as individual fragments. Note the exclusion
of an unwanted object from the 3DS file.of an unwanted object from the 3DS file.

Note that is customary to fuse fragments that Note that is customary to fuse fragments that
differ only by smoothing groups with differ only by smoothing groups with an option to an option to
preserve the sharp seampreserve the sharp seam. This greatly reduces . This greatly reduces
fragment count and retains the geometry fully.fragment count and retains the geometry fully.

##define (PROC_3DSLD_EX06_PIECES) as <PROCDAT_IMPORT3DS>
#tag FilterExObjName = ("Reference" , STRF_CONTAINS | STRF_CASELESS , 0)
#tag Transform = "Decl(M);Mul(0.0003,0.0003,0.0003);"
#tag Ldo_MeshFacetize = (NO)
#tag Ldo_MeshUseSmg = (YES)
#tag Ldo_FragNormals = (NO , NO)
#tag Ldo_FragMeshWeld = (WELD_POS , 0.0)
#tag Asm_XSmg = (YES , WELD_NONE , 0.0)
#tag Asm_XMat = (NO , WELD_NONE , 0.0)
#tag Asm_XObj = (NO , WELD_NONE , 0.0)
#tag Vgn_NamePrefix = (NONE)

##define (G_EX06_PIECES) as <VERTEXSET_3A>
#tag File = "Files_Media\Mesh_Droid.3ds"
#tag Definer = (VTD_FVF_FILE)
#tag LoadProc = (PROC_3DSLD_EX06_PIECES)
#tag Indexed = (YES)
#tag LoadNow = (1)

##save (G_EX06_PIECES) in ("Files_Media\SaveRobot_Pieces.vsf")

131

D103B:Ex06 - GeometryD103B:Ex06 - Geometry

Best practice: Load 3DS, save Best practice: Load 3DS, save
as VSF, reload VSF.as VSF, reload VSF.

When saved, multiWhen saved, multi--
component vertex streams component vertex streams
loaded from 3DS will store loaded from 3DS will store
each component in a each component in a
separately named VSF file separately named VSF file
that reflects its originating that reflects its originating
3DS object, material …etc.3DS object, material …etc.

In production, these In production, these
components can be loaded as components can be loaded as
individual meshes and individual meshes and
organized in the rendering organized in the rendering
sequence in a more efficient sequence in a more efficient
manner than if we were manner than if we were
loading a single vertex loading a single vertex
stream with substream with sub--components.components.

132

D103B:Ex06 - GeometryD103B:Ex06 - Geometry

Implementation: geometry fused in a single Implementation: geometry fused in a single
vertex stream (all ASM flags set to YES).vertex stream (all ASM flags set to YES).

Note that the resulting stream has lost its Note that the resulting stream has lost its
materials definition (sharp edges are still materials definition (sharp edges are still
correctly retained in assembly with WELD_NONE)correctly retained in assembly with WELD_NONE)

##define (PROC_3DSLD_EX06_FUSED) as <PROCDAT_IMPORT3DS>
#tag FilterExObjName = ("Reference" , STRF_CONTAINS | STRF_CASELESS , 0)
#tag Transform = "Decl(M);Mul(0.0003,0.0003,0.0003);"
#tag Ldo_MeshFacetize = (NO)
#tag Ldo_MeshUseSmg = (YES)
#tag Ldo_FragNormals = (NO , NO)
#tag Ldo_FragMeshWeld = (WELD_POS , 0.0)
#tag Asm_XSmg = (YES , WELD_NONE , 0.0)
#tag Asm_XMat = (YES , WELD_NONE , 0.0)
#tag Asm_XObj = (YES , WELD_NONE , 0.0)
#tag Vgn_NamePrefix = (NONE)

##define (G_EX06_FUSED) as <VERTEXSET_3A>
#tag File = "Files_Media\Mesh_Droid.3ds"
#tag Definer = (VTD_FVF_FILE)
#tag LoadProc = (PROC_3DSLD_EX06_FUSED)
#tag Indexed = (YES)
#tag LoadNow = (1)

133

D103B:Ex06 - GeometryD103B:Ex06 - Geometry

Assembly sequence and priority:Assembly sequence and priority:
AsmXSmgAsmXSmg: Customarily set on. Assembles fragments with : Customarily set on. Assembles fragments with
different smoothing groups and same object/material. Seam different smoothing groups and same object/material. Seam
preservation is controlled by the WELD_* tag argument.preservation is controlled by the WELD_* tag argument.
AsmXMatAsmXMat: Assembles fragments with different materials but : Assembles fragments with different materials but
same object/mesh. This flag assumes that smoothing groups same object/mesh. This flag assumes that smoothing groups
have been already assembled, and does not preserve them.have been already assembled, and does not preserve them.
AsmXObjAsmXObj: Assembles fragments across different objects and : Assembles fragments across different objects and
meshes in the 3DS file. Depending on the meshes in the 3DS file. Depending on the AsmXMat AsmXMat setting, setting,
this will also fuse all materials, or assemble fragments along this will also fuse all materials, or assemble fragments along
identical material groups. This flag also assumes that identical material groups. This flag also assumes that
smoothing groups have been assembled.smoothing groups have been assembled.

To weld a complex 3DS structure into a single To weld a complex 3DS structure into a single
vertex stream, turn on all three flags on and set vertex stream, turn on all three flags on and set
WELD_NONE to preserve seam. WELD_NONE to preserve seam.

134

D103B:Ex06 - GeometryD103B:Ex06 - Geometry

Advanced 3DS data loading preview:Advanced 3DS data loading preview:
The 3DS vertex format is limited to positions and texture The 3DS vertex format is limited to positions and texture
coordinates. Percoordinates. Per--vertex color, weights, indices …etc. cannot be vertex color, weights, indices …etc. cannot be
retained in 3DS files. retained in 3DS files.
Principia features several specialized procedures to extract Principia features several specialized procedures to extract
such vertex data directly from MAX or other modeling such vertex data directly from MAX or other modeling
programs, so that you can import rigged characters and programs, so that you can import rigged characters and
complex artwork directly into Principia.complex artwork directly into Principia.
Some shaders require perSome shaders require per--vertex tangent, vertex tangent, binormalbinormal, ,
curvature…etc. data. The FX_Import3DS loader can add full curvature…etc. data. The FX_Import3DS loader can add full
perper--vertex tangent space data to the geometry being loaded. vertex tangent space data to the geometry being loaded.
It can also store the geometry in UTL and VSF formats for It can also store the geometry in UTL and VSF formats for
loading into other Principia geometry procedures. loading into other Principia geometry procedures.

These advanced 3DS/Max loading techniques will These advanced 3DS/Max loading techniques will
be covered in subsequent demos.be covered in subsequent demos.

135

Flat sprites still live …in fact it is
pretty common to insert flat images
in the 3D rendering stream. Ex07
shows how to manage geometry to
render flat images with shaders at
a desired size and screen position.

136

Overlays are a special form of flat
renders, covering the entire render
target with pixel content. Overlays
are also very common and essential
for some SFX.

137

The geometry convention and shaders used
in Ex07 can in fact be standardized and
placed in a common include to be used
across all demos (and your products). This
overlay shader preserves the aspect ratio
of the image content. (a typical use is
blooms with mis-matched render targets).

138

Another type of render target overlay is the solid ARGB fill and
blend. There are many possible shader-based designs for rendering
flat geometry. The common include is but one of them.

The point of Ex07 is to help you understand input and output
geometry with the programmable pipeline. Oh, why do I need
shaders to render a flat image? Simple – endless creative
possibilities for FX, and the fixed function pipeline is going away…

139

D103B:Ex07 - Geometry D103B:Ex07 - Geometry

ObjectivesObjectives
Show input/output geometry convention for rendering Show input/output geometry convention for rendering
flat images and render target overlays with shaders.flat images and render target overlays with shaders.

Requirements and ImplementationRequirements and Implementation
Render flat image (sprite) with size and location Render flat image (sprite) with size and location
encapsulated by the encapsulated by the kinex kinex world transform.world transform.
Render a flat overlay that fully covers the Render a flat overlay that fully covers the viewport viewport
regardless of any distortion involved. regardless of any distortion involved.
Render a flat overlay that covers the Render a flat overlay that covers the viewport viewport while while
preserving the aspect ratio of the overlay image.preserving the aspect ratio of the overlay image.

Notes:Notes:
Viewport Viewport overlays are common in many SFX, while overlays are common in many SFX, while
many commercial products still use flat images. Ex07 many commercial products still use flat images. Ex07
shows just one design option of the many that are shows just one design option of the many that are
possible if you understand GPU geometry processing.possible if you understand GPU geometry processing.

140

D103B:Ex07 - Geometry D103B:Ex07 - Geometry

Geometry in programmable rendering:Geometry in programmable rendering:
Input geometry can be in any units you wantInput geometry can be in any units you want

Geometry placement parameters (display position and scale) can bGeometry placement parameters (display position and scale) can be e
passed to the shader in any way you want (camera transforms, passed to the shader in any way you want (camera transforms,
kinex kinex matrices, variables bound to shader registers …etc).matrices, variables bound to shader registers …etc).

Vertex shader output is in clipped (homogeneous) space, which Vertex shader output is in clipped (homogeneous) space, which
covers the [covers the [--1,1] XY [01] Z range. The depth Z can be used to 1,1] XY [01] Z range. The depth Z can be used to
control output stacking.control output stacking.

The vertical clip space position runs from top to bottom, which The vertical clip space position runs from top to bottom, which
requires inverting input that is assumed positive from bottom torequires inverting input that is assumed positive from bottom to top.top.

Geometry in fixed pipeline (Chapter 11):Geometry in fixed pipeline (Chapter 11):
Untransformed input geometry subject to same output requirementsUntransformed input geometry subject to same output requirements
as with the programmable pipeline. The input will be processed as with the programmable pipeline. The input will be processed
using the fixed pipeline vertex TNL.using the fixed pipeline vertex TNL.

In addition, can pass transformed geometry with exact pixel In addition, can pass transformed geometry with exact pixel
position coordinates without any vertex processing.position coordinates without any vertex processing.

141

D103B:Ex07 - Geometry D103B:Ex07 - Geometry

Design choices for Ex07 and throughout demos:Design choices for Ex07 and throughout demos:
Flat images: input geometry is a unit rectangle (XY in [01] withFlat images: input geometry is a unit rectangle (XY in [01] with UV UV
in [01] along Lin [01] along L--R and BR and B--T). The size and location of the image T). The size and location of the image
rendered using this geometry is specified in the world matrix ofrendered using this geometry is specified in the world matrix of the the
kinex kinex used to render this geometry.used to render this geometry.

Overlays: input geometry is a rectangle covering the full clip sOverlays: input geometry is a rectangle covering the full clip space pace
extent (XY in [extent (XY in [--1,1] with UV in [01] along L1,1] with UV in [01] along L--R and TR and T--B). The V B). The V
texcoord texcoord is inverted to fit the screen Tis inverted to fit the screen T--B pixel coordinate B pixel coordinate
convention.convention.

We use the standard register bindings in SHD3D to pass We use the standard register bindings in SHD3D to pass viewport viewport
(c50) and transform data (c0) to the shaders that will render fl(c50) and transform data (c0) to the shaders that will render flat at
images and overlays.images and overlays.

Common encapsulation:Common encapsulation:
Because flat image and overlays are used in many places, the Because flat image and overlays are used in many places, the
common geometries and several typical shaders are included in common geometries and several typical shaders are included in
Common_Common_FlatRendersFlatRenders..cfgcfg. .

142

D103B:Ex07 - GeometryD103B:Ex07 - Geometry

Standard “flat renders” include geometriesStandard “flat renders” include geometries
Use the twoUse the two--triangle version for direct image renders triangle version for direct image renders
with the standard include shaders.with the standard include shaders.
Use the highUse the high--triangle version for displacement and triangle version for displacement and
texture coordinate effects with custom shaders.texture coordinate effects with custom shaders.

@@Flat rectangle for sprites; UnitXY, two triangles; U-L-R, V-B-T; POS:3F,NORM:3F,CD:CLR,TEX:2F; flat white color
##define (G_STD_FLATSPRITE) as <VERTEXSET_3A>

#tag File = "../Demo_Common/Files_Media/Meshes/Mesh_FlatRect_UnitSquare[2P-FFFFFFFF-RNDT].vsf"
#tag Definer = (VTD_DCL_FILE)

@@Flat rectangle for overlays; ClipXY; two triangles; U-L-R, V-T-B; POS:3F,NORM:3F,CD:CLR,TEX:2F; flat white color
##define (G_STD_FLATOVERLAY) as <VERTEXSET_3A>

#tag File = "../Demo_Common/Files_Media/Meshes/Mesh_FlatRect_ClipOverlay[2P-FFFFFFFF-RNDT].vsf"
#tag Definer = (VTD_DCL_FILE)

@@Flat rectangle for sprites; UnitXY, 512 triangles; U-L-R, V-B-T; POS:3F,NORM:3F,CD:CLR,TEX:2F; flat white color
##define (G_STD_RICHSPRITE) as <VERTEXSET_3A>

#tag File = "../Demo_Common/Files_Media/Meshes/Mesh_FlatRect_UnitSquare[LP-FFFFFFFF-RNDT].3ds"
#tag Definer = (VTD_DCL_FILE)

@@Flat rectangle for overlays; ClipXY; 512 triangles; U-L-R, V-T-B; POS:3F,NORM:3F,CD:CLR,TEX:2F; flat white color
##define (G_STD_RICHOVERLAY) as <VERTEXSET_3A>

#tag File = "../Demo_Common/Files_Media/Meshes/Mesh_FlatRect_ClipOverlay[LP-FFFFFFFF-RNDT].3ds"
#tag Definer = (VTD_DCL_FILE)

143

D103B:Ex07 - GeometryD103B:Ex07 - Geometry

The unit XY square for “flat sprite” renders The unit XY square for “flat sprite” renders
Normal and color data is included but not usedNormal and color data is included but not used
Note that the UV coordinates are not flipped, hence Note that the UV coordinates are not flipped, hence
Y is positive upwards. The display inversion will be Y is positive upwards. The display inversion will be
done in the vertex shader.done in the vertex shader.

TEXT
VSF3
UNIT RECTANGLE FOR RENDERING FLAT GEOMETRY SPRITES WITH FULL BASE COLOR (NONINVERTED V)
@@ Vertex format specification
POS:3F, NORM:3F, COLOR:COLOR, TEX:2F
@@ Primitive type
4
@@ Indexed flag
0
@@ Reserved bootstrap section
0
@@ Total number of vertices and indices
36
0
@@ Number of frames
1
@@ Frame#0: Primitive first vertex index, primitive count, number of vertices
0 2 6
@@ Frame#0: Locus of first frame in index array and index count per frame
0 0
@@ Vertex data Tr01 for CCW cull
1.00 1.00 1.00 0.0 0.0 1.0 FFFFFFFF 1.0 1.0
0.00 0.00 1.00 0.0 0.0 1.0 FFFFFFFF 0.0 0.0
1.00 0.00 1.00 0.0 0.0 1.0 FFFFFFFF 1.0 0.0
@@ Vertex data Tr02 for CCW cull
1.00 1.00 1.00 0.0 0.0 1.0 FFFFFFFF 1.0 1.0
0.00 1.00 1.00 0.0 0.0 1.0 FFFFFFFF 0.0 1.0
0.00 0.00 1.00 0.0 0.0 1.0 FFFFFFFF 0.0 0.0

144

D103B:Ex07 - GeometryD103B:Ex07 - Geometry

The [The [--1,1] square for RT overlay renders 1,1] square for RT overlay renders
Overlays widely used for many SFX (blooms, Overlays widely used for many SFX (blooms,
shadow volumes, RT blends…etc)shadow volumes, RT blends…etc)
Geometry supports three overlay shaders (fill with Geometry supports three overlay shaders (fill with
image, fill with preservedimage, fill with preserved--AR image, fill with ARGB).AR image, fill with ARGB).

TEXT
VSF3
UNIT RECTANGLE FOR RENDERING FLAT GEOMETRY SPRITES WITH FULL BASE COLOR (INVERTED V)
@@ Vertex format specification
POS:3F, NORM:3F, COLOR:COLOR, TEX:2F
@@ Primitive type
4
@@ Indexed flag
0
@@ Reserved bootstrap section
0
@@ Total number of vertices and indices
36
0
@@ Number of frames
1
@@ Frame#0: Primitive first vertex index, primitive count, number of vertices
0 2 6
@@ Frame#0: Locus of first frame in index array and index count per frame
0 0
@@ Vertex data Tr01 for CCW cull
1.00 1.00 1.00 0.0 0.0 1.0 FFFFFFFF 1.0 0.0
1.00 -1.0 1.00 0.0 0.0 1.0 FFFFFFFF 1.0 1.0
-1.0 -1.0 1.00 0.0 0.0 1.0 FFFFFFFF 0.0 1.0
@@ Vertex data Tr02 for CCW cull
1.00 1.00 1.00 0.0 0.0 1.0 FFFFFFFF 1.0 0.0
-1.0 -1.0 1.00 0.0 0.0 1.0 FFFFFFFF 0.0 1.0
-1.0 1.00 1.00 0.0 0.0 1.0 FFFFFFFF 0.0 0.0

145

D103B:Ex07 - GeometryD103B:Ex07 - Geometry

Standard include vertex shaders for rendering flat Standard include vertex shaders for rendering flat
geometry (the pixel shaders are trivial).geometry (the pixel shaders are trivial).

@@VS for flat sprites, c0 matrix encodes sprite size and position, c50 holds viewport size
@@Inputs expect std unit geomery, outputs flat white color per vertex, alpha encoded in texture
##define (VS_IMG_SPRITE) as <VSHADER_3A>

#tag File = "../Demo_Common/Files_Media/Shaders/VS_Img_UnitSprite.shd"
#tag ShaderFcn = "VS_Img_UnitSprite"
#tag ShaderAsm = (NO)
#tag ShaderVs = (1.1)

@@VS for image overlay with texture alpha channel. Input expects std overlay geometry.
@@This vertex shader will stretch the image to fit the viewport size
##define (VS_IMG_OVERLAY_FULLIMG) as <VSHADER_3A>

#tag File = "../Demo_Common/Files_Media/Shaders/VS_Img_Overlay_Full.shd"
#tag ShaderFcn = "VS_Img_Overlay_Full"
#tag ShaderAsm = (NO)
#tag ShaderVs = (1.1)

@@VS for image overlay with texture alpha channel. Input expects std overlay geometry.
@@This vertex shader will adjust output so that the image fits the viewport but keeps its AR.
@@Viewport size is expected in c50, image size in c0 scale matrix.
##define (VS_IMG_OVERLAY_KEEPIMG) as <VSHADER_3A>

#tag File = "../Demo_Common/Files_Media/Shaders/VS_Img_Overlay_Keep.shd"
#tag ShaderFcn = "VS_Img_Overlay_Keep"
#tag ShaderAsm = (NO)
#tag ShaderVs = (1.1)

@@VS for image overlay with flat ARGB passed by shader register variable.
@@Input expects std overlay geometry. Color expectecd in c29.
##define (VS_IMG_OVERLAY_RGBA) as <VSHADER_3A>

#tag File = "../Demo_Common/Files_Media/Shaders/VS_Img_Overlay_Rgba.shd"
#tag ShaderFcn = "VS_Img_Overlay_Rgba"
#tag ShaderAsm = (NO)
#tag ShaderVs = (1.1)

146

D103B:Ex07 - GeometryD103B:Ex07 - Geometry

Vertex shader to render flat “sprite” at XY with Vertex shader to render flat “sprite” at XY with
desired WH dimension carried by the desired WH dimension carried by the kinexkinex. .

//***//
// Shader data registers, variables and static constants //
//***//
##include "..\Demo_Common\Files_Media\Shaders\VS_Std_Includes.shd"

struct VS_INPUT
{ // Inbound vertex buffer stream

float3 vPosition : POSITION ;
float2 vTexCoords : TEXCOORD0;

};

struct VS_OUTPUT
{ // Extant processed vertex stream

float4 vPosition : POSITION ;
float4 vDiffuse : COLOR0 ;
float2 vTexCoord0 : TEXCOORD0;

};

//***//
// Shader principal operations //
//***//
VS_OUTPUT VS_Img_UnitSprite (const VS_INPUT In) { VS_OUTPUT Out = (VS_OUTPUT) 0;

/* Kinex carries sprite position and size. Using viewport */
/* dimensions, transform the data into homogeneous coords */
Out.vPosition = mul(float4(In.vPosition,1.0f), mWrld);
Out.vPosition.x = (Out.vPosition.x + vPort.x) * 2.0 / (vPort.z - vPort.x) - 1.0;
Out.vPosition.y = 1.0 - (Out.vPosition.y + vPort.y) * 2.0 / (vPort.w - vPort.y);
Out.vPosition.z = 0.0;
Out.vPosition.w = 1.0;

/* Use only base texture with flat white diffuse */
Out.vDiffuse = float4(1.0, 1.0, 1.0, 1.0);
Out.vTexCoord0 = In.vTexCoords;

return Out; }
//***//
// Shader principal operations //
//***//

147

D103B:Ex07 - GeometryD103B:Ex07 - Geometry

Vertex shader to overlay render target with an Vertex shader to overlay render target with an
image, stretching it fully to fill RT. image, stretching it fully to fill RT.

The position transform assumes using the overlay clip The position transform assumes using the overlay clip
space [space [--1,1] mesh with inverted V1,1] mesh with inverted V--texcoordtexcoord. .

//***//
// Shader data registers, variables and static constants //
//***//
##include "..\Demo_Common\Files_Media\Shaders\VS_Std_Includes.shd"

struct VS_INPUT
{ // Inbound vertex buffer stream

float3 vPosition : POSITION ;
float2 vTexCoords : TEXCOORD0;

};

struct VS_OUTPUT
{ // Extant processed vertex stream

float4 vPosition : POSITION ;
float4 vDiffuse : COLOR0 ;
float2 vTexCoord0 : TEXCOORD0;

};

//***//
// Shader principal operations //
//***//
VS_OUTPUT VS_Img_Overlay_Full (const VS_INPUT In) { VS_OUTPUT Out = (VS_OUTPUT) 0;

/* Full coverage of clip space */
Out.vPosition.x = (In.vPosition.x);
Out.vPosition.y = (In.vPosition.y);
Out.vPosition.z = 0.0;
Out.vPosition.w = 1.0;

/* Use only base texture with flat white diffuse */
Out.vDiffuse = float4(1.0, 1.0, 1.0, 1.0);
Out.vTexCoord0 = In.vTexCoords;

return Out; }
//***//
// Shader principal operations //
//***//

148

D103B:Ex07 - GeometryD103B:Ex07 - Geometry

Vertex shader to overlay and keep aspect ratio. Vertex shader to overlay and keep aspect ratio.
Note the use of Note the use of viewport viewport and source image size. and source image size.

return Out; }

TO BE TO BE

FINALIZEDFINALIZED

149

D103B:Ex07 - GeometryD103B:Ex07 - Geometry

Vertex shader to fill the overlay with solid colorVertex shader to fill the overlay with solid color
Commonly used in many shadow and transition FXCommonly used in many shadow and transition FX
Expects color to be passed in register c29 by material Expects color to be passed in register c29 by material

//***//
// Shader data registers, variables and static constants //
//***//
##include "..\Demo_Common\Files_Media\Shaders\VS_Std_Includes.shd"
float4 OverColor : register (c29); //Api: Overlay ARGB color

struct VS_INPUT
{ // Inbound vertex buffer stream

float3 vPosition : POSITION ;
float2 vTexCoords : TEXCOORD0;

};

struct VS_OUTPUT
{ // Extant processed vertex stream

float4 vPosition : POSITION ;
float4 vDiffuse : COLOR0 ;
float2 vTexCoord0 : TEXCOORD0;

};

//***//
// Shader principal operations //
//***//
VS_OUTPUT VS_Img_Overlay_Rgba (const VS_INPUT In) { VS_OUTPUT Out = (VS_OUTPUT) 0;

/* Full coverage of clip space */
Out.vPosition.x = (In.vPosition.x);
Out.vPosition.y = (In.vPosition.y);
Out.vPosition.z = 0.0;
Out.vPosition.w = 1.0;

/* Use only base texture with flat white diffuse */
Out.vDiffuse = OverColor;
Out.vTexCoord0 = In.vTexCoords;

return Out; }
//***//
// Shader principal operations //
//***//

150

D103B:Ex07 - GeometryD103B:Ex07 - Geometry

Rendering setup for a “flat image” sprite with the Rendering setup for a “flat image” sprite with the
common include shaderscommon include shaders

Kinex Kinex must pass insert position and image size on must pass insert position and image size on
screen in pixels, relative to upper left corner. screen in pixels, relative to upper left corner.
Typical design used to render flat screenTypical design used to render flat screen--space space
primitives as part of the world rendering sequence.primitives as part of the world rendering sequence.

##define (M_EX07_SPRITE) as <MATERIAL_3A>
#tag VShader = (VS_IMG_SPRITE)
#tag PShader = (PS_IMG_TEXOVERLAY)
#tag TX = (S_EX07_IMG , 0)

##define (R_EX07_SPRITE) as <MESH_3A>
#tag Component = (0 , M_EX07_COMPREFIX , -)
#tag Component = (0 , M_EX07_SPRITE , G_STD_FLATSPRITE)

##define (O_EX07_SPRITE) as <GENOBJECT_3A>
#tag Construct = ("Decl(M); Mul(512.0, 341.0, 0); Mov(128.0, 128.0, 0); Set(tM,0);" , R_EX07_SPRITE , NONE)

151

D103B:Ex07 - GeometryD103B:Ex07 - Geometry

Rendering setup for the RT overlays by an image. Rendering setup for the RT overlays by an image.
Note that the aspectNote that the aspect--ratio preserving setratio preserving set--up up
requires the image size to be passed in Mo.requires the image size to be passed in Mo.

##define (M_EX07_FULLOVER) as <MATERIAL_3A>
#tag VShader = (VS_IMG_OVERLAY_FULLIMG)
#tag PShader = (PS_IMG_TEXOVERLAY)
#tag TX = (S_EX07_OVR , 0)

##define (R_EX07_FULLOVER) as <MESH_3A>
#tag Component = (0 , M_EX07_COMPREFIX , -)
#tag Component = (0 , M_EX07_FULLOVER , G_STD_FLATOVERLAY)

##define (O_EX07_FULLOVER) as <GENOBJECT_3A>
#tag Construct = ("Decl(M); Set(tM,0);" , R_EX07_FULLOVER , NONE)

##define (M_EX07_ADJOVER) as <MATERIAL_3A>
#tag VShader = (VS_IMG_OVERLAY_KEEPIMG)
#tag PShader = (PS_IMG_TEXOVERLAY)
#tag TX = (S_EX07_OVR , 0)

##define (R_EX07_ADJOVER) as <MESH_3A>
#tag Component = (0 , M_EX07_COMPREFIX , -)
#tag Component = (0 , M_EX07_ADJOVER , G_STD_FLATOVERLAY)

##define (O_EX07_ADJOVER) as <GENOBJECT_3A>
#tag Construct = ("Decl(M); Mul(512.0, 341.0, 0); Set(tM,0);" , R_EX07_ADJOVER , NONE)

152

D103B:Ex07 - GeometryD103B:Ex07 - Geometry

Rendering setup for a constant ARGB color Rendering setup for a constant ARGB color
overlay. The material passes the desired color to overlay. The material passes the desired color to
the common include vertex shader.the common include vertex shader.

Remember to put this in your script. We will use Remember to put this in your script. We will use
these “standard” flat render tools a lot…these “standard” flat render tools a lot…

##define <SYS_VARIABLE> = (V_COLORFILL , VARTYPE_FSR , 0.5 , 0.5 , 0.5 , 0.5)

##define (M_EX07_RGBAOVER) as <MATERIAL_3A>
#tag VShader = (VS_IMG_OVERLAY_RGBA)
#tag PShader = (PS_IMG_CLROVERLAY)
#tag VsVar = (29 , V_COLORFILL)

##define (R_EX07_RGBAOVER) as <MESH_3A>
#tag Component = (0 , M_EX07_COMPREFIX , -)
#tag Component = (0 , M_EX07_RGBAOVER , G_STD_FLATOVERLAY)

##define (O_EX07_RGBAOVER) as <GENOBJECT_3A>
#tag Construct = ("Decl(M); Set(tM,0);" , R_EX07_RGBAOVER , NONE)

##parse "../Demo_Common/Files_Scripts/Common_FlatRenders.cfg"

153

Great many applications still render
flat images as part of their graphic
output. Principia provides many
ways to output flat images. This
demo shows one method that recaps
how to specify geometry and
camera settings.

This basic rectangle is made out of
two triangle primitives, specified in
pixel units. The camera settings
are made to emulate a 2D display.
The object is positioned on the
screen using a kinex with pixel
translation units, and rendered
using the fixed function pipeline.

Remember - The (0,0) origin is the
center of the viewport, and lighting
has to be turned off because there
is no normal data in this geometry.
Pseudo2D objects can be lit if
normals are provided.

154

D103B:Ex08 - Geometry D103B:Ex08 - Geometry

ObjectivesObjectives
Show how set up transformed geometry for emulating Show how set up transformed geometry for emulating
2D “2D “blitblit” renders using the fixed function pipeline. ” renders using the fixed function pipeline.

Requirements and ImplementationRequirements and Implementation
Draw a single rectangle 320 pixels to the side at pixel Draw a single rectangle 320 pixels to the side at pixel
position (484,256) on the screen. Use a geometry that position (484,256) on the screen. Use a geometry that
is sized in pixels for that purpose.is sized in pixels for that purpose.
Be able to reposition this rectangle, turn it around, Be able to reposition this rectangle, turn it around,
scale it …etc. without changing its vertex coordinates. scale it …etc. without changing its vertex coordinates.
Use a Use a kinex kinex sized in pixels for that purpose.sized in pixels for that purpose.
Set camera to emulate 2D flat projection to Set camera to emulate 2D flat projection to viewport viewport
and turn GPU lighting off. and turn GPU lighting off.

Notes:Notes:
Legacy flat geometry rendered in the fixed function Legacy flat geometry rendered in the fixed function
pipeline approach enjoys quite a broad use still.pipeline approach enjoys quite a broad use still.

155

D103B:Ex08 - GeometryD103B:Ex08 - Geometry

Principia offers many pathways for rendering flat Principia offers many pathways for rendering flat
images, with or without shaders:images, with or without shaders:

Manually setting up flat geometry and camera settings Manually setting up flat geometry and camera settings
that emulate 2D rendering. The geometry can be:that emulate 2D rendering. The geometry can be:

•• Sized in pixels (as in the present Ex08)Sized in pixels (as in the present Ex08)

•• Sized in absoluteSized in absolute viewportviewport units (as in Ex07)units (as in Ex07)

Using point vertex primitives. Note that these are Using point vertex primitives. Note that these are
being discontinued in DirectX10.being discontinued in DirectX10.

Using Principia objects of the <Sprite> class which Using Principia objects of the <Sprite> class which
automatically set up each object world transform so automatically set up each object world transform so
that it renders as a camerathat it renders as a camera--facing tile in a 3D world.facing tile in a 3D world.

Using vertex buffers with transformed vertex data Using vertex buffers with transformed vertex data
populated by the user application or by Principia populated by the user application or by Principia
specialized fastspecialized fast--2D sprite components.2D sprite components.

156

D103B:Ex08 - GeometryD103B:Ex08 - Geometry

Pseudo2D vertex set geometry file. Units are in Pseudo2D vertex set geometry file. Units are in
pixels. There are no pixels. There are no normalsnormals, thus lighting should , thus lighting should
be turned off to see the object.be turned off to see the object.

TEXT
VS3A
TRIANGLE LIST PRIMITIVE PSEUDO2D OBJECT
@@ Vertex format specification
POS:3F, COLOR:COLOR
@@ Primitive type
4
@@ Indexed flag
0
@@ Reserved bootstrap section
0
@@ Local material code
0
@@ Total number of vertices and indices
6
0
@@ Number of frames
1
@@ Frame#0: Primitive first vertex index, primitive count, number of vertices
0 2 6
@@ Frame#0: Locus of first frame in index array and index count per frame
0 0
@@ Vertex data Trig01
000.0 000.0 0.000 FFFF0000
320.0 000.0 0.000 FF00FF00
000.0 320.0 0.000 FF00FF00
@@ Vertex data Trig01
000.0 320.0 0.000 FF00FF00
320.0 000.0 0.000 FF00FF00
320.0 320.0 0.000 FF0000FF

157

D103B:Ex08 - GeometryD103B:Ex08 - Geometry

Implementation: Camera settings for simulated Implementation: Camera settings for simulated
2D render. With this camera, pixel2D render. With this camera, pixel--sized vertex sized vertex
coordinates map to screencoordinates map to screen--centered pixels.centered pixels.

A pixelA pixel--scale scale kinex kinex positions the geometry positions the geometry
relative to the screen center:relative to the screen center:

##define (CAMERA_ST2D) as <CAMERA_3A>
#tag Target = (NONE) ' Render on the back buffer
#tag Viewport = (- , - , - , -) ‘ Use full extent of render target
#tag ViewSim2D = (1)
#tag MaterialBgn = (M_STDNULL)
#tag MaterialEnd = (M_STDNULL)

##define (G_EX07) as <VERTEXSET_3A>
#tag File = "Files_Media\Mesh_Pseudo2D_Rectangle.vsf"
#tag Definer = (VTD_FVF_FILE)
#tag LoadNow = (1)

##define (R_EX07) as <MESH_3A>
#tag Instance = (INST_REF)
#tag Component = (0 , M_BASEFVF , G_EX07)

##define (O_EX07) as <GENOBJECT_3A>
#tag Instance = (INST_REF)
#tag Construct = ("Decl(M); Mov(-128.0,-128.0,0.0)" , R_EX07 , NONE)

159

D103C – MaterialsD103C – Materials

Materials define the appearance of the Materials define the appearance of the
rendered geometry. They instruct the rendered geometry. They instruct the
GPU how to shade GPU how to shade rasterized rasterized primitives.primitives.

Once a material is set, its individual Once a material is set, its individual
properties (shaders, textures…) remain properties (shaders, textures…) remain
in force for all primitives rendered.in force for all primitives rendered.

Principia materials encapsulate many Principia materials encapsulate many
different data items used to define the different data items used to define the
rendering process. Chapter 3 covers the rendering process. Chapter 3 covers the
basics of defining and using materials.basics of defining and using materials.

160

D103C – MaterialsD103C – Materials

Principia materials contain:Principia materials contain:
GPU states (S)GPU states (S)
Textures (S)Textures (S)
Shaders (S)Shaders (S)
Shader data bindings (S)Shader data bindings (S)
Effects (A)Effects (A)
Reference to other embedded materials (A)Reference to other embedded materials (A)
Phase (S)Phase (S)
Conditional logic (A)Conditional logic (A)

Material elements are of two types:Material elements are of two types:
States (denoted by S above) set a GPU operation property States (denoted by S above) set a GPU operation property
that remains in force until removed by another material.that remains in force until removed by another material.
Actions (denoted by A above) operate on graphic data Actions (denoted by A above) operate on graphic data
related to the material at the time of its GPU execution.related to the material at the time of its GPU execution.

161

D103C – MaterialsD103C – Materials

To document new featuresTo document new features
PhasesPhases
KeyframesKeyframes
Gpu Gpu data settingsdata settings

162

D103C – MaterialsD103C – Materials

GPU states:GPU states:
Render pipeline states (several states matter only with the Render pipeline states (several states matter only with the
legacy fixed function pipeline, but many do not legacy fixed function pipeline, but many do not –– such as such as
depth or frame buffer settings).depth or frame buffer settings).

Texture sampling states (per stage).Texture sampling states (per stage).

Texture stage states (legacy fixed pipeline, not relevant Texture stage states (legacy fixed pipeline, not relevant
when using shaders).when using shaders).

GPU material surface properties (legacy fixed pipeline, not GPU material surface properties (legacy fixed pipeline, not
relevant when using shaders).relevant when using shaders).

If the current trends continue, stateIf the current trends continue, state--based GPU control will based GPU control will
increasingly be replaced by programmable shaders.increasingly be replaced by programmable shaders.

163

D103C – MaterialsD103C – Materials

GPU textures:GPU textures:
Bind graphic components (textures, cube maps) to the GPU Bind graphic components (textures, cube maps) to the GPU
texture registers. Usually, the appearance of an object is texture registers. Usually, the appearance of an object is
determined by a variety of texture maps used to render it.determined by a variety of texture maps used to render it.

GPU shaders:GPU shaders:
Vertex shadersVertex shaders

Pixel shadersPixel shaders

Texture shaders (not very useful, but supported)Texture shaders (not very useful, but supported)

Microsoft DX HLSL effects (not very useful but supported)Microsoft DX HLSL effects (not very useful but supported)

TesselationTesselation shaders (future capability on DX10)shaders (future capability on DX10)

Geometry shaders (future capability on DX10)Geometry shaders (future capability on DX10)

Buffer/fragment shaders (future capability on DX11+?)Buffer/fragment shaders (future capability on DX11+?)

164

D103C – MaterialsD103C – Materials

GPU shader data bindings:GPU shader data bindings:
Connects application data items (transform matrices, variables) Connects application data items (transform matrices, variables) to to
shader program input registers shader program input registers

Principia effects:Principia effects:
Perform prePerform pre--defined operations on graphic data or GPU settings defined operations on graphic data or GPU settings
when the material is presented to the GPU (e.g. render target when the material is presented to the GPU (e.g. render target
selection, texture data modification…etc.)selection, texture data modification…etc.)

Principia phase:Principia phase:
Sets the Principia graphic interface phase. The phase determinesSets the Principia graphic interface phase. The phase determines
how the interface will process data. Used for advanced SFX and how the interface will process data. Used for advanced SFX and
performanceperformance--oriented design.oriented design.

Material logic conditions:Material logic conditions:
Controls what pieces of the material definition are actually appControls what pieces of the material definition are actually applied lied
based on variables describing platform capability.based on variables describing platform capability.

165

D103C – MaterialsD103C – Materials

Understand how graphic data is rendered !Understand how graphic data is rendered !
With current graphic hardware, you cannot simply say “this With current graphic hardware, you cannot simply say “this
item is made of sparkling crystal with a blue halo around it”.item is made of sparkling crystal with a blue halo around it”.

You need to understand and design how geometry data and You need to understand and design how geometry data and
GPU settings will render up to the desired image/style. You GPU settings will render up to the desired image/style. You
also need to understand the connections between also need to understand the connections between
geometry, materials and application/Principia data items.geometry, materials and application/Principia data items.

You need to translate this design into a rendering sequence You need to translate this design into a rendering sequence
and materials applied at the proper sequence stages.and materials applied at the proper sequence stages.

Chapter 3 is the starting point for building this Chapter 3 is the starting point for building this
skill. If you have attempted your own graphics skill. If you have attempted your own graphics
programming, you will appreciate how much programming, you will appreciate how much
Principia simplifies the task of rendering. Principia simplifies the task of rendering.

166

D103C – MaterialsD103C – Materials

Modern GPU rendering pipeline and core dataModern GPU rendering pipeline and core data

167

D103C – MaterialsD103C – Materials

FrontFront--end optional end optional
tesselation tesselation stage can take stage can take
rough geometry and rough geometry and
“enrich” it with texture “enrich” it with texture
encoded data. Covered in encoded data. Covered in
later chapters.later chapters.

Binding geometry data. Binding geometry data.
GPU states do not change GPU states do not change
once streams begin once streams begin
rendering. Geometries rendering. Geometries
that appear to be made of that appear to be made of
multiple materials multiple materials
rendered in pieces, or are rendered in pieces, or are
carefully designed carefully designed
illusions.illusions.

168

D103C – MaterialsD103C – Materials

PostPost--pixel rendering pixel rendering
pipeline stages. Vital pipeline stages. Vital
for proper generation for proper generation
of combined images of combined images
and many SFX.and many SFX.

Future Future GPUs GPUs may may
operate on different operate on different
pipeline designs pipeline designs –– e.g. e.g.
postpost--DX10 designs DX10 designs
may feature coverage may feature coverage
shaders to replace shaders to replace
current postcurrent post--pixel pixel
processing. processing.

169

D103C – MaterialsD103C – Materials

How Principia and you make use of materials?How Principia and you make use of materials?
Materials are defined in script (occasionally, Principia will geMaterials are defined in script (occasionally, Principia will generate nerate
materials internally, but this is done for specialized circumstamaterials internally, but this is done for specialized circumstances).nces).
Graphic data that is part of the material (e.g. texture maps) isGraphic data that is part of the material (e.g. texture maps) is
produced externally and defined in script. Principia may produced externally and defined in script. Principia may
complement graphic data (e.g. fill instance buffers or transformcomplement graphic data (e.g. fill instance buffers or transformed ed
vertex buffers) using specialized components configured in scripvertex buffers) using specialized components configured in script.t.
The rendering sequence is constructed in script (remember the The rendering sequence is constructed in script (remember the
viewerviewer--worldworld--layerlayer--objectobject--kinexkinex--mesh (material+geometry) mesh (material+geometry)
thing?). This is where materials are specified.thing?). This is where materials are specified.
As Principia runs the rendering sequence, it schedules materialsAs Principia runs the rendering sequence, it schedules materials
while building the rendering queue for the current scene. This iwhile building the rendering queue for the current scene. This is s
referred as the material being executed by the API. When the GPUreferred as the material being executed by the API. When the GPU
takes over and executes the queue, the material is actually takes over and executes the queue, the material is actually
executed by the GPU as part of the physical rendering process.executed by the GPU as part of the physical rendering process.

170

D103C – Materials and MapsD103C – Materials and Maps

Maps:Maps:
Maps are textures used to encode data used to render the Maps are textures used to encode data used to render the
surface appearance of the current primitive.surface appearance of the current primitive.
Maps are vital ingredients of materials. As textures, they are Maps are vital ingredients of materials. As textures, they are
simply bound to the appropriate texture stage indexes.simply bound to the appropriate texture stage indexes.

Map generation:Map generation:
External art pipelineExternal art pipeline
Principia procedural pipelinePrincipia procedural pipeline
Output of render operationsOutput of render operations

Multiple render passes and compositing:Multiple render passes and compositing:
To generate the final image, the same geometry (or variation To generate the final image, the same geometry (or variation
thereof) is rendered multiple times (often on different render thereof) is rendered multiple times (often on different render
targets, some of which may serve as maps) with different targets, some of which may serve as maps) with different
material settings. This is a common practice for many VFX.material settings. This is a common practice for many VFX.

171

D103C – Materials and MapsD103C – Materials and Maps

Commonly used map types:Commonly used map types:
Base color mapsBase color maps: provide fine: provide fine--scale color surface detail. This is the scale color surface detail. This is the
classic, ordinary use of textures…classic, ordinary use of textures…
Light mapsLight maps: modulate the illumination on the current primitive. Used : modulate the illumination on the current primitive. Used
to encode the full, complex play of light in the scene to aid orto encode the full, complex play of light in the scene to aid or replace replace
shaders. shaders. Shadow mapsShadow maps are special dynamically generated light maps.are special dynamically generated light maps.
Environment/image mapsEnvironment/image maps: specialized light maps used to represent : specialized light maps used to represent
reflection or refraction. Image maps can replace 3D render portireflection or refraction. Image maps can replace 3D render portions. ons.
Normal mapsNormal maps: used to simulate fine: used to simulate fine--scale surface detail and its scale surface detail and its
interaction with light.interaction with light.
Displacement mapsDisplacement maps: similar to normal maps, but used to actually : similar to normal maps, but used to actually
move the geometry rendered.move the geometry rendered.
Specular and other property mapsSpecular and other property maps: used to represent fine: used to represent fine--scale scale
variation of light interaction properties.variation of light interaction properties.
Depth/occlusion mapsDepth/occlusion maps: encode distance information and other : encode distance information and other
geometric relationships used by advancedgeometric relationships used by advanced shadersshaders..
Function mapsFunction maps: used to represent functional relationships between : used to represent functional relationships between
inputs and outputs, such as those involved in inputs and outputs, such as those involved in shadersshaders..

172

D103C – Materials and TexturesD103C – Materials and Textures

Principia textures and materials:Principia textures and materials:
Textures are an essential ingredient of Textures are an essential ingredient of
materials, as maps and more… materials, as maps and more…
Principia encapsulates textures in the Principia encapsulates textures in the
<SURFACE> script component and <SURFACE> script component and
GX_Surface programmatic API component. GX_Surface programmatic API component.
The <SURFACE> component is a rich The <SURFACE> component is a rich
encapsulation of data that supports the encapsulation of data that supports the
myriad of uses to which textures are put. myriad of uses to which textures are put.
It features multiple properties and tags, It features multiple properties and tags,
which are enumerated in D103I, and which are enumerated in D103I, and
introduced throughout the demo materials. introduced throughout the demo materials.

173

D103C – GPU States SynopsisD103C – GPU States Synopsis

D3DRS_ZENABLE = 7,D3DRS_ZENABLE = 7,
D3DRS_FILLMODE = 8,D3DRS_FILLMODE = 8,
D3DRS_SHADEMODE = 9,D3DRS_SHADEMODE = 9,
D3DRS_ZWRITEENABLE = 14,D3DRS_ZWRITEENABLE = 14,
D3DRS_ALPHATESTENABLE = 15,D3DRS_ALPHATESTENABLE = 15,
D3DRS_LASTPIXEL = 16,D3DRS_LASTPIXEL = 16,
D3DRS_SRCBLEND = 19,D3DRS_SRCBLEND = 19,
D3DRS_DESTBLEND = 20,D3DRS_DESTBLEND = 20,
D3DRS_CULLMODE = 22,D3DRS_CULLMODE = 22,
D3DRS_ZFUNC = 23,D3DRS_ZFUNC = 23,
D3DRS_ALPHAREF = 24,D3DRS_ALPHAREF = 24,
D3DRS_ALPHAFUNC = 25,D3DRS_ALPHAFUNC = 25,
D3DRS_DITHERENABLE = 26,D3DRS_DITHERENABLE = 26,
D3DRS_ALPHABLENDENABLE = 27,D3DRS_ALPHABLENDENABLE = 27,
D3DRS_FOGENABLE = 28,D3DRS_FOGENABLE = 28,
D3DRS_SPECULARENABLE = 29,D3DRS_SPECULARENABLE = 29,
D3DRS_FOGCOLOR = 34,D3DRS_FOGCOLOR = 34,
D3DRS_FOGTABLEMODE = 35,D3DRS_FOGTABLEMODE = 35,
D3DRS_FOGSTART = 36,D3DRS_FOGSTART = 36,
D3DRS_FOGEND = 37,D3DRS_FOGEND = 37,
D3DRS_FOGDENSITY = 38,D3DRS_FOGDENSITY = 38,
D3DRS_RANGEFOGENABLE = 48,D3DRS_RANGEFOGENABLE = 48,
D3DRS_STENCILENABLE = 52,D3DRS_STENCILENABLE = 52,
D3DRS_STENCILFAIL = 53,D3DRS_STENCILFAIL = 53,
D3DRS_STENCILZFAIL = 54,D3DRS_STENCILZFAIL = 54,
D3DRS_STENCILPASS = 55,D3DRS_STENCILPASS = 55,
D3DRS_STENCILFUNC = 56,D3DRS_STENCILFUNC = 56,
D3DRS_STENCILREF = 57,D3DRS_STENCILREF = 57,
D3DRS_STENCILMASK = 58,D3DRS_STENCILMASK = 58,

D3DRS_TEXTUREFACTOR = 60,D3DRS_TEXTUREFACTOR = 60,
D3DRS_WRAP0 = 128,D3DRS_WRAP0 = 128,
.
D3DRS_WRAP15 = 205,D3DRS_WRAP15 = 205,
D3DRS_SEPARATEALPHABLENDENABLE = 206,D3DRS_SEPARATEALPHABLENDENABLE = 206,
D3DRS_SRCBLENDALPHA = 207,D3DRS_SRCBLENDALPHA = 207,
D3DRS_DESTBLENDALPHA = 208,D3DRS_DESTBLENDALPHA = 208,
D3DRS_BLENDOPALPHA = 209,D3DRS_BLENDOPALPHA = 209,
D3DRS_MULTISAMPLEANTIALIAS = 161,D3DRS_MULTISAMPLEANTIALIAS = 161,
D3DRS_MULTISAMPLEMASK = 162,D3DRS_MULTISAMPLEMASK = 162,
D3DRS_CLIPPING = 136,D3DRS_CLIPPING = 136,
D3DRS_LIGHTING = 137,D3DRS_LIGHTING = 137,
D3DRS_AMBIENT = 139,D3DRS_AMBIENT = 139,
D3DRS_FOGVERTEXMODE = 140,D3DRS_FOGVERTEXMODE = 140,
D3DRS_COLORVERTEX = 141,D3DRS_COLORVERTEX = 141,
D3DRS_LOCALVIEWER = 142,D3DRS_LOCALVIEWER = 142,
D3DRS_NORMALIZENORMALS = 143,D3DRS_NORMALIZENORMALS = 143,
D3DRS_DIFFUSEMATERIALSOURCE = 145,D3DRS_DIFFUSEMATERIALSOURCE = 145,
D3DRS_SPECULARMATERIALSOURCE = 146,D3DRS_SPECULARMATERIALSOURCE = 146,
D3DRS_AMBIENTMATERIALSOURCE = 147,D3DRS_AMBIENTMATERIALSOURCE = 147,
D3DRS_EMISSIVEMATERIALSOURCE = 148,D3DRS_EMISSIVEMATERIALSOURCE = 148,
D3DRS_VERTEXBLEND = 151,D3DRS_VERTEXBLEND = 151,
D3DRS_CLIPPLANEENABLE = 152,D3DRS_CLIPPLANEENABLE = 152,
D3DRS_POINTSIZE = 154,D3DRS_POINTSIZE = 154,
D3DRS_POINTSIZE_MIN = 155,D3DRS_POINTSIZE_MIN = 155,
D3DRS_POINTSPRITEENABLE = 156,D3DRS_POINTSPRITEENABLE = 156,
D3DRS_POINTSCALEENABLE = 157,D3DRS_POINTSCALEENABLE = 157,
D3DRS_POINTSCALE_A = 158,D3DRS_POINTSCALE_A = 158,
.

174

D103C – GPU States SynopsisD103C – GPU States Synopsis

D3DRS_PATCHEDGESTYLE = 163,D3DRS_PATCHEDGESTYLE = 163,
D3DRS_DEBUGMONITORTOKEN = 165,D3DRS_DEBUGMONITORTOKEN = 165,
D3DRS_POINTSIZE_MAX = 166,D3DRS_POINTSIZE_MAX = 166,
D3DRS_INDEXEDVERTEXBLENDENABLE = 167,D3DRS_INDEXEDVERTEXBLENDENABLE = 167,
D3DRS_COLORWRITEENABLE = 168,D3DRS_COLORWRITEENABLE = 168,
D3DRS_TWEENFACTOR = 170,D3DRS_TWEENFACTOR = 170,
D3DRS_BLENDOP = 171,D3DRS_BLENDOP = 171,
D3DRS_POSITIONDEGREE = 172,D3DRS_POSITIONDEGREE = 172,
D3DRS_NORMALDEGREE = 173,D3DRS_NORMALDEGREE = 173,
D3DRS_SCISSORTESTENABLE = 174,D3DRS_SCISSORTESTENABLE = 174,
D3DRS_SLOPESCALEDEPTHBIAS = 175,D3DRS_SLOPESCALEDEPTHBIAS = 175,
D3DRS_ANTIALIASEDLINEENABLE = 176,D3DRS_ANTIALIASEDLINEENABLE = 176,
D3DRS_MINTESSELLATIONLEVEL = 178,D3DRS_MINTESSELLATIONLEVEL = 178,
D3DRS_MAXTESSELLATIONLEVEL = 179,D3DRS_MAXTESSELLATIONLEVEL = 179,
D3DRS_ADAPTIVETESS_X = 180,D3DRS_ADAPTIVETESS_X = 180,
.
D3DRS_ADAPTIVETESS_W = 183,D3DRS_ADAPTIVETESS_W = 183,
D3DRS_ENABLEADAPTIVETESSELATION = 184,D3DRS_ENABLEADAPTIVETESSELATION = 184,
D3DRS_TWOSIDEDSTENCILMODE = 185,D3DRS_TWOSIDEDSTENCILMODE = 185,
D3DRS_CCW_STENCILFAIL = 186,D3DRS_CCW_STENCILFAIL = 186,
D3DRS_CCW_STENCILZFAIL = 187,D3DRS_CCW_STENCILZFAIL = 187,
D3DRS_CCW_STENCILPASS = 188,D3DRS_CCW_STENCILPASS = 188,
D3DRS_CCW_STENCILFUNC = 189,D3DRS_CCW_STENCILFUNC = 189,
D3DRS_COLORWRITEENABLE1 = 190,D3DRS_COLORWRITEENABLE1 = 190,
D3DRS_COLORWRITEENABLE2 = 191,D3DRS_COLORWRITEENABLE2 = 191,
D3DRS_COLORWRITEENABLE3 = 192,D3DRS_COLORWRITEENABLE3 = 192,
D3DRS_BLENDFACTOR = 193,D3DRS_BLENDFACTOR = 193,
D3DRS_SRGBWRITEENABLE = 194,D3DRS_SRGBWRITEENABLE = 194,
D3DRS_DEPTHBIAS = 195 D3DRS_DEPTHBIAS = 195

PerPer--stage sampler states:stage sampler states:
D3DSAMP_ADDRESSU = 1,D3DSAMP_ADDRESSU = 1,
D3DSAMP_ADDRESSV = 2,D3DSAMP_ADDRESSV = 2,
D3DSAMP_ADDRESSW = 3,D3DSAMP_ADDRESSW = 3,
D3DSAMP_BORDERCOLOR = 4,D3DSAMP_BORDERCOLOR = 4,
D3DSAMP_MAGFILTER = 5,D3DSAMP_MAGFILTER = 5,
D3DSAMP_MINFILTER = 6,D3DSAMP_MINFILTER = 6,
D3DSAMP_MIPFILTER = 7,D3DSAMP_MIPFILTER = 7,
D3DSAMP_MIPMAPLODBIAS = 8,D3DSAMP_MIPMAPLODBIAS = 8,
D3DSAMP_MAXMIPLEVEL = 9,D3DSAMP_MAXMIPLEVEL = 9,
D3DSAMP_MAXANISOTROPY = 10,D3DSAMP_MAXANISOTROPY = 10,
D3DSAMP_SRGBTEXTURE = 11,D3DSAMP_SRGBTEXTURE = 11,
D3DSAMP_ELEMENTINDEX = 12,D3DSAMP_ELEMENTINDEX = 12,
D3DSAMP_DMAPOFFSET = 13,D3DSAMP_DMAPOFFSET = 13,

This list is meant to serve as a quick This list is meant to serve as a quick
recall help. Principia provides recall help. Principia provides
named definitions of all states and named definitions of all states and
their values. The names are based their values. The names are based
on the DirectX names, and listed in on the DirectX names, and listed in
the Principia Reference Manual. It is the Principia Reference Manual. It is
a good idea to become conversant a good idea to become conversant
in the meaning and usage of GPU in the meaning and usage of GPU
states.states.

175

This simply textured object is directly loaded from a 3DS file. The Principia 3DS loader
will automatically load material textures and fixed function pipeline properties, and
properly assign them to their vertex streams. This is one of the few cases where the
user does not need to focus much on materials … it is also not a very good practice.

176

D103C:Ex01 – MaterialsD103C:Ex01 – Materials

ObjectivesObjectives
Load and render a textured geometry from a 3DS file Load and render a textured geometry from a 3DS file
Show the use of base color maps (ordinary textures)Show the use of base color maps (ordinary textures)
Show the use of UID referencing for external componentsShow the use of UID referencing for external components

Requirements and Implementation Requirements and Implementation
Configure the 3DS loader to import an object with multiple Configure the 3DS loader to import an object with multiple
texturetexture--bearing materials in a manner that preserves bearing materials in a manner that preserves
texturing at the seams.texturing at the seams.
Script the textures referenced by the 3DS materials, and Script the textures referenced by the 3DS materials, and
assign them an UID matching texture names in the 3DS file.assign them an UID matching texture names in the 3DS file.
Construct the Construct the renderable renderable object and render it using the object and render it using the
standard standard BlinnBlinn//GouraudGouraud shaders from SHD3D.shaders from SHD3D.

NotesNotes
When rendering with shaders, any substrate material When rendering with shaders, any substrate material
properties (except Texture0) directly loaded from 3DS will properties (except Texture0) directly loaded from 3DS will
be ignored, unless explicitly passed to shader registers.be ignored, unless explicitly passed to shader registers.

177

D103C:Ex01 – MaterialsD103C:Ex01 – Materials

IDs, IDs, UIDsUIDs and referencing:and referencing:
Referencing: Most Principia components need to refer to other coReferencing: Most Principia components need to refer to other components as mponents as
part of their makepart of their make--up. Principia uses two mechanisms for that: IDs and up. Principia uses two mechanisms for that: IDs and UIDsUIDs..
IDs are unique numbers that correspond to the names used when anIDs are unique numbers that correspond to the names used when an object is object is
created in script. For instance, ##define (TEX) as <SURFACE> crecreated in script. For instance, ##define (TEX) as <SURFACE> creates a ates a
GX_Surface component with an ID of say 90565, which is mapped toGX_Surface component with an ID of say 90565, which is mapped to the the
string “TEX” internally. When Principia sees TEX in script, it astring “TEX” internally. When Principia sees TEX in script, it automatically utomatically
translates that to 90565 using its internal algorithms, and knowtranslates that to 90565 using its internal algorithms, and knows which object s which object
one is referring to. In fact, all the names you see in script arone is referring to. In fact, all the names you see in script are translated to e translated to
numbers for speed.numbers for speed.
IDs are local to their scripts. In two different scripts, “TEX” IDs are local to their scripts. In two different scripts, “TEX” may map to 90565 may map to 90565
or 93454 or anything else. This presents a problem when loading or 93454 or anything else. This presents a problem when loading a a
component from a storage file instead of a script. The file may component from a storage file instead of a script. The file may be loaded by be loaded by
many different scripts, yet we want all references contained in many different scripts, yet we want all references contained in the file to be the file to be
accurate. Moreover, the script writer may want to call the same accurate. Moreover, the script writer may want to call the same component component
something else but “TEX” in another application.something else but “TEX” in another application.
Principia usesPrincipia uses UIDsUIDs when storing or loading references from external files (not when storing or loading references from external files (not
scripts). The scripts). The UIDs UIDs are text strings that are designed to maximize the are text strings that are designed to maximize the
portability of save files to be used by Principia. All AX_portability of save files to be used by Principia. All AX_GraficGrafic() and many other () and many other
classes of Principia components have classes of Principia components have UIDsUIDs..

178

D103C:Ex01 – MaterialsD103C:Ex01 – Materials

UIDsUIDs specification rules:specification rules:
Explicit <#tag UID> forces a name on the component. Regardless oExplicit <#tag UID> forces a name on the component. Regardless of ID, f ID,
when referenced in files by this UID, the component will always when referenced in files by this UID, the component will always be found.be found.
If no tag is present, implicit condensation of the If no tag is present, implicit condensation of the FNameFName internal variable into internal variable into
an UID. This is often used with textures, and enables us to locaan UID. This is often used with textures, and enables us to locate textures te textures
referenced by materials by file name.referenced by materials by file name.
If no If no FNameFName is present, the string equivalent of the ID will be used to is present, the string equivalent of the ID will be used to
construct an UID. This means that script names of the same compoconstruct an UID. This means that script names of the same component nent
across different scripts must be consistent.across different scripts must be consistent.
File storage of File storage of UIDsUIDs. When components are stored in a file using the Principia . When components are stored in a file using the Principia
::File*() methods, the current UID will be stored. When loading ::File*() methods, the current UID will be stored. When loading components components
from the file, their UID will be restored, unless overridden by from the file, their UID will be restored, unless overridden by the <UID> tag. the <UID> tag.

Example:Example:e mesh “MS_HEAD” which contains the material “e mesh “MS_HEAD” which contains the material “SkinSetUpSkinSetUp.mat” which .mat” which
contains the texture “contains the texture “SubsurfaceMapSubsurfaceMap..pngpng”. All these components need to be ”. All these components need to be
either scripted with corresponding either scripted with corresponding UIDsUIDs, or loaded from an external file , or loaded from an external file
orehand, again with the same orehand, again with the same UIDsUIDs..

	Chapter 3 – Basic Rendering
	Chapter 3 – Basic Rendering
	Chapter 3 – Basic Rendering
	Chapter 3 – Frameworks
	Chapter 3 – Frameworks
	Chapter 3 – Frameworks
	Chapter 3 – Primitives
	Chapter 3 – Primitives
	Chapter 3 – Primitives
	Chapter 3 – Sequences
	Chapter 3 – Sequences
	Chapter 3 – Roadmap
	Chapter 3 – Roadmap
	D103A – Unified GUI
	D103A – Unified GUI
	D103A – Unified GUI
	D103A – Unified GUI
	D103A – Unified GUI
	D103A – Unified GUI
	D103A – Unified GUI
	D103A – Unified GUI
	D103A – Unified GUI
	D103A – Unified GUI
	D103A – Unified GUI
	D103A – Unified GUI
	D103A – Unified GUI
	D103A – Unified GUI
	D103A – Unified GUI
	D103A – Unified GUI
	D103A – Unified GUI
	D103A – Unified GUI
	D103A – Unified GUI
	D103A – Unified GUI
	D103A – Unified GUI
	D103A – Unified GUI
	D103A – Unified GUI
	D103B – Geometry
	D103B – Geometry
	D103B – Geometry
	D103B – Geometry
	D103B – Geometry
	D103B – Geometry
	D103B – Geometry Data
	D103B – Geometry Data
	D103B – Geometry Data
	D103B – Geometry Data
	D103B – Geometry Data
	D103B – Geometry Data
	D103B – Geometry Data
	D103B – Geometry Data
	D103B – Geometry Data
	D103B – Geometry Data
	D103B – Geometry Data
	D103B – Geometry Data
	D103B – Geometry Data
	D103B – Geometry Data
	D103B – Kinexes
	D103B – Kinexes
	D103B – Kinex World Matrix
	D103B – Kinex Syntax (1)
	D103B – Kinex Syntax (2)
	D103B – Kinex Syntax (3)
	D103B – Kinex Syntax (4)
	D103B – Kinex Syntax (5)
	D103B – Kinex Syntax (6)
	D103B – Concept Outline
	D103B:Ex01 - Geometry
	D103B:Ex01 - Geometry
	D103B:Ex01 - Geometry
	D103B:Ex01 - Geometry
	D103B – VSF File Structure (1)
	D103B – VSF File Structure (2)
	D103B:Ex01 - Geometry
	D103B:Ex01 - Geometry
	D103B:Ex01 - Geometry
	D103B:Ex02 - Geometry
	D103B:Ex02 - Geometry
	D103B:Ex02 - Geometry
	D103B:Ex02 - Geometry
	D103B:Ex02 - Geometry
	D103B:Ex02 - Geometry
	D103B:Ex02 - Geometry
	D103B:Ex02 - Geometry
	D103B:Ex02 - Geometry
	D103B:Ex02 - Geometry
	D103B:Ex03 - Geometry
	D103B:Ex03 - Geometry
	D103B:Ex03 - Geometry
	D103B:Ex03 - Geometry
	D103B:Ex03 - Geometry
	D103B:Ex03 - Geometry
	D103B:Ex04 - Geometry
	D103B – 3DS Max Files
	D103B – 3DS Max Files
	D103B – 3DS Max Files
	D103B – Embedded GX_VSet3A
	D103B – 3DS Loader Procedure
	D103B – 3DS Loader Procedure
	D103B – 3DS Loader Procedure
	D103B – 3DS Loader Procedure
	D103B – 3DS Loader Procedure
	D103B – 3DS Loader Procedure
	D103B:Ex04 - Geometry
	D103B:Ex04 - Geometry
	D103B:Ex04 - Geometry
	D103B:Ex04 - Geometry
	D103B:Ex04 - Geometry
	D103B:Ex04 - Geometry
	D103B:Ex04 - Geometry
	D103B:Ex05 - Geometry
	D103B:Ex05 - Geometry
	D103B:Ex05 - Geometry
	D103B:Ex05 - Geometry
	D103B – Face Culling
	D103B – Selective Loading
	D103B:Ex06 - Geometry
	D103B:Ex06 - Geometry
	D103B:Ex06 - Geometry
	D103B:Ex06 - Geometry
	D103B:Ex06 - Geometry
	D103B:Ex06 - Geometry
	D103B:Ex07 - Geometry
	D103B:Ex07 - Geometry
	D103B:Ex07 - Geometry
	D103B:Ex07 - Geometry
	D103B:Ex07 - Geometry
	D103B:Ex07 - Geometry
	D103B:Ex07 - Geometry
	D103B:Ex07 - Geometry
	D103B:Ex07 - Geometry
	D103B:Ex07 - Geometry
	D103B:Ex07 - Geometry
	D103B:Ex07 - Geometry
	D103B:Ex07 - Geometry
	D103B:Ex07 - Geometry
	D103B:Ex08 - Geometry
	D103B:Ex08 - Geometry
	D103B:Ex08 - Geometry
	D103B:Ex08 - Geometry
	D103C – Materials
	D103C – Materials
	D103C – Materials
	D103C – Materials
	D103C – Materials
	D103C – Materials
	D103C – Materials
	D103C – Materials
	D103C – Materials
	D103C – Materials
	D103C – Materials
	D103C – Materials and Maps
	D103C – Materials and Maps
	D103C – Materials and Textures
	D103C – GPU States Synopsis
	D103C – GPU States Synopsis
	D103C:Ex01 – Materials
	D103C:Ex01 – Materials
	D103C:Ex01 – Materials
	D103C:Ex01 – Materials
	D103C:Ex01 – Materials
	D103C:Ex01 – Materials
	D103C:Ex01 – Materials
	D103C:Ex01 – Materials
	D103C:Ex02 – Materials
	D103C:Ex02 – Materials
	D103C:Ex02 – Materials
	D103C:Ex02 – Materials
	D103C:Ex02 – Materials
	D103C:Ex02 – Materials
	D103C:Ex02 – Materials
	D103C:Ex02 – Materials
	D103C:Ex02 – Materials
	D103C:Ex02 – Materials
	D103C:Ex02 – Materials
	D103C:Ex02 – Materials
	D103C:Ex02 – Materials
	D103C:Ex03 – Materials
	D103C:Ex03 – Materials
	D103C:Ex03 – Materials
	D103C:Ex03 – Materials
	D103C:Ex03 – Materials
	D103C:Ex03 – Materials
	D103C:Ex04 – Materials
	D103C:Ex04 – Materials
	D103C:Ex05 – Materials
	D103C:Ex05 – Materials
	D103D – Cameras and Lights
	D103D – Cameras and Lights
	D103D – Cameras and Lights
	D103D – Cameras
	D103D – Cameras
	D103D – Cameras
	D103D – Cameras
	D103D – Cameras
	D103D – Lights
	D103D – Lights
	D103D – Classic Lighting
	D103D – Classic Lighting
	D103D – Classic Lighting
	D103D:Ex01 – Cameras & Lights
	D103D:Ex01 – Cameras & Lights
	D103D:Ex01 – Cameras & Lights
	D103D:Ex01 – Cameras & Lights
	D103D:Ex01 – Cameras & Lights
	D103D:Ex01 – Cameras & Lights
	D103D:Ex01 – Cameras & Lights
	D103D:Ex02 – Cameras & Lights
	D103D:Ex02 – Cameras & Lights
	D103D:Ex02 – Cameras & Lights
	D103D:Ex02 – Cameras & Lights

